scholarly journals Experimental Research on Size Distribution of Suspended Particles in water Based on Mie Scattering Theory

2021 ◽  
Vol 769 (4) ◽  
pp. 042063
Author(s):  
Huan Zhou ◽  
Lian Li
2013 ◽  
Vol 401-403 ◽  
pp. 437-440 ◽  
Author(s):  
Ni Chen Yang ◽  
Hong Xia Wang ◽  
You Zhang Zhu

Based on the Mie scattering theory and the gamma size distribution model, 10.6μm laser scattering characteristics in dust particles are calculated and analyzed.On this basis,the time broadening and space broadening characteristics of the laser are analyzed by using Monte Carlo method.Transmittance change with the transmission distance are quantitative calculated and the time detention and space broadening characteristics of the laser passed through dust for different transmission distances are calculated and analyzed. The results show that the transmittance decreases with increasing transmission distance, and the transmittance is close to 0 when transmission distance is close to 200m; The time delay of 10.6μm laser is more significant with the increaseing transmission distance; The space broadening of 10.6μm laser is more obvious and the energy is more dispersed with the increaseing transmission distance.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yali Ren ◽  
Jiandong Mao ◽  
Hu Zhao ◽  
Chunyan Zhou ◽  
Xin Gong ◽  
...  

Aerosol plays a very important role in affecting the earth-atmosphere radiation budget, and particle size distribution is an important aerosol property parameter. Therefore, it is necessary to determine the particle size distribution. However, the particle size distribution determined by the particle extinction efficiency factor according to the Mie scattering theory is an ill-conditioned integral equation, namely, the Fredholm integral equation of the first kind, which is very difficult to solve. To avoid solving such an integral equation, the BP neural network prediction model was established. In the model, the aerosol optical depth obtained by sun photometer CE-318 and kernel functions obtained by Mie scattering theory were used as the inputs of the neural network, particle size distributions collected by the aerodynamic particle sizer APS 3321 were used as the output, and the Levenberg–Marquardt algorithm with the fastest descending speed was adopted to train the model. For verifying the feasibility of the prediction model, some experiments were carried out. The results show that BP neural network has a better prediction effect than that of the RBF neural network and is an effective method to obtain the aerosol particle size distribution of the whole atmosphere column using the data of CE-318 and APS 3321.


2015 ◽  
Vol 52 (1) ◽  
pp. 013001
Author(s):  
Vo Quang Sang Vo Quang Sang ◽  
冯鹏 Feng Peng ◽  
汤斌 Tang Bin ◽  
赵敬晓 Zhao Jingxiao ◽  
蒋上海 Jiang Shanghai ◽  
...  

2012 ◽  
Vol 192 ◽  
pp. 425-429
Author(s):  
Hong Lin ◽  
Xin Min Wang ◽  
Chuan Lin Zhou ◽  
Wei Zhong Li

A new technology about ocean suspended particles density detecting by Mie scattering theory is proposed. This technology is based on analyzing and studying the transmission characteristics of the laser in the seawater. Based on Mie scattering theory, the optical scattering characteristics of oceanic suspended particles is researched, and a new method of calculating the scattering coefficient and backward scattering ratio is putted forward. By detecting the laser scattering signal under the seawater, the density information of ocean suspended particles can be gain and detect. A ocean suspended particles density detecting model based on airborne lidar system is firstly established through analyzing the absorbing and scattering characteristics of the suspended particles. By simulating and calculating, it is proved that the technology can detect and monitor the density of ocean suspended particles effectively, and therefore it can predict the density change of ocean suspended particles also.


2007 ◽  
Vol 48 (1) ◽  
pp. 303 ◽  
Author(s):  
M. Joseph Costello ◽  
So¨nke Johnsen ◽  
Kurt O. Gilliland ◽  
Christopher D. Freel ◽  
W. Craig Fowler

2020 ◽  
Vol 86 (12) ◽  
pp. 737-743
Author(s):  
Haoyuan Cheng ◽  
Jinkui Chu ◽  
Ran Zhang ◽  
Lianbiao Tian ◽  
Xinyuan Gui

It is still unclear how water turbidity affects the underwater polarization pattern. Current simulations only consider single Rayleigh scattering of water molecules and ignore multiple Mie scattering of suspended particles. In this study, a method based on a combination of Monte Carlo numerical simulation and Mie scattering theory is used to establish a model of the turbid underwater polarization distribution. Stokes vector and Mueller matrix are used to simulate the underwater polarization patterns within Snell's window. The distribution patterns and dynamic changes of the simulation are consistent with field measurements. The maximum depth that the polarization pattern can be maintained is calculated for different water types. The influence of water turbidity on polarization patterns is discussed. This model provides a tool for researchers to quantitatively analyze the distribution of turbid underwater polarization. In addition, the study is valuable for remote sensing and marine surveillance.


Sign in / Sign up

Export Citation Format

Share Document