Influence of Group Velocity on Roughness Losses for 1D Periodic Structures

Author(s):  
Jaime García ◽  
Alejandro Martínez ◽  
Javier Martí
2021 ◽  
Vol 11 (10) ◽  
pp. 4319
Author(s):  
Muhammad Khalid Malik ◽  
Dimitrios Chronopoulos ◽  
Francesco Ciampa

Guided waves have immense potential for structural health monitoring applications in numerous industries including aerospace. It is necessary to evaluate guided wave dispersion characteristics, i.e., group velocity and phase velocity profiles, for using them effectively. For complex structures, the profiles can have highly irregular shapes. In this work, a direct method for calculating the group velocity profiles for complex, composite, and periodic structures using a wave and finite element scheme is presented. The group velocity calculation technique is easy to implement, highly computationally efficient, and works with the standard finite element formulation. The major contribution is summarised in the form of a comprehensive algorithm for calculating the group velocity profiles. The method is compared with the existing analytical and numerical methods for calculation of dispersion curves. Finally, an experimental study in a multilayered composite plate is conducted and the results are found to be in good agreement. The technique is suitable to be used in all guided wave application areas such as material characterisation, non-destructive testing, and structural health monitoring.


Author(s):  
F. Hasselbach ◽  
A. Schäfer

Möllenstedt and Wohland proposed in 1980 two methods for measuring the coherence lengths of electron wave packets interferometrically by observing interference fringe contrast in dependence on the longitudinal shift of the wave packets. In both cases an electron beam is split by an electron optical biprism into two coherent wave packets, and subsequently both packets travel part of their way to the interference plane in regions of different electric potential, either in a Faraday cage (Fig. 1a) or in a Wien filter (crossed electric and magnetic fields, Fig. 1b). In the Faraday cage the phase and group velocity of the upper beam (Fig.1a) is retarded or accelerated according to the cage potential. In the Wien filter the group velocity of both beams varies with its excitation while the phase velocity remains unchanged. The phase of the electron wave is not affected at all in the compensated state of the Wien filter since the electron optical index of refraction in this state equals 1 inside and outside of the Wien filter.


1999 ◽  
Vol 09 (PR10) ◽  
pp. Pr10-85-Pr10-87
Author(s):  
V. M. Vinokur

1991 ◽  
Vol 161 (9) ◽  
pp. 201-209 ◽  
Author(s):  
Polina S. Landa ◽  
V.F. Marchenko

Sign in / Sign up

Export Citation Format

Share Document