Multinodal fifth-order optical aberrations of optical systems without rotational symmetry: spherical aberration

2009 ◽  
Vol 26 (5) ◽  
pp. 1090 ◽  
Author(s):  
Kevin P. Thompson
Author(s):  
J T Fourie

The attempts at improvement of electron optical systems to date, have largely been directed towards the design aspect of magnetic lenses and towards the establishment of ideal lens combinations. In the present work the emphasis has been placed on the utilization of a unique three-dimensional crystal objective aperture within a standard electron optical system with the aim to reduce the spherical aberration without introducing diffraction effects. A brief summary of this work together with a description of results obtained recently, will be given.The concept of utilizing a crystal as aperture in an electron optical system was introduced by Fourie who employed a {111} crystal foil as a collector aperture, by mounting the sample directly on top of the foil and in intimate contact with the foil. In the present work the sample was mounted on the bottom of the foil so that the crystal would function as an objective or probe forming aperture. The transmission function of such a crystal aperture depends on the thickness, t, and the orientation of the foil. The expression for calculating the transmission function was derived by Hashimoto, Howie and Whelan on the basis of the electron equivalent of the Borrmann anomalous absorption effect in crystals. In Fig. 1 the functions for a g220 diffraction vector and t = 0.53 and 1.0 μm are shown. Here n= Θ‒ΘB, where Θ is the angle between the incident ray and the (hkl) planes, and ΘB is the Bragg angle.


2017 ◽  
Author(s):  
Petr Pokorný ◽  
Filip Šmejkal ◽  
Pavel Kulmon ◽  
Antonín Mikš ◽  
Jiří Novák ◽  
...  

2021 ◽  
Author(s):  
Yuxuan Liu ◽  
Jessica Steidle ◽  
Jannick P. Rolland

2013 ◽  
Vol 19 (S3) ◽  
pp. 11-14
Author(s):  
Harald Rose ◽  
Joris Dik

The correction of the aberrations of electron lenses is the long story of many seemingly fruitless efforts to improve the resolution of electron microscopes by compensating for aberrations of round electron lenses over a period of 50 years. The problem started in 1936 when Scherzer demonstrated that the chromatic and spherical aberrations of rotationally symmetric electron lenses are unavoidable. Moreover, the coefficients of these aberrations cannot be made sufficiently small. As a result, the resolution limit of standard electron microscopes equals about one hundred times the wavelength of the electrons, whereas modern light microscopes have reached a resolution limit somewhat smaller than the wavelength. In 1947, Scherzer found an ingenious way for enabling aberration correction. He demonstrated in a famous article that it is in theory possible to eliminate chromatic and spherical aberrations by lifting any one of the constraints of his theorem, either by abandoning rotational symmetry or by introducing time-varying fields, or space charges. Moreover, he proposed a multipole corrector compensating for the spherical aberration of the objective lens.


2006 ◽  
Vol 106 (4-5) ◽  
pp. 301-306 ◽  
Author(s):  
L.Y. Chang ◽  
A.I. Kirkland ◽  
J.M. Titchmarsh

Sign in / Sign up

Export Citation Format

Share Document