Slow-light analysis based on tunable plasmon-induced transparency in patterned black phosphorus metamaterial

2021 ◽  
Vol 38 (3) ◽  
pp. 412
Author(s):  
Kuan Wu ◽  
Hongjian Li ◽  
Chao Liu ◽  
Cuixiu Xiong ◽  
Banxian Ruan ◽  
...  
2021 ◽  
Author(s):  
Li Huang ◽  
Zhongpeng Jia ◽  
Bin Tang

Abstract Black phosphorus (BP), as a new type of two-dimensional material, has drawn considerable interest because of its distinct physics and electronic characteristics. In this work, we theoretically present a BP-based metamaterial, unit cell of which is composed of a rectangular BP nano-patch and two parallel BP strips. The research results indicate that tunable anisotropic plasmon-induced transparency (PIT) effect can be achieved in the presented metamaterials when the polarization of incident light is along armchair and zigzag directions of BP crystal, respectively. Moreover, the spectra responses and group delay accompanied by the PIT effect can be actively controlled by adjusting the carrier density and geometric parameters. The electromagnetic simulation results calculated by finite-difference time-domain (FDTD) method show good agreement with the coupled Lorentz oscillator model. Our proposed nanostructure provides a new path for designing photonic devices such as slow light and photodetector in the mid-infrared region.


2019 ◽  
Vol 52 (40) ◽  
pp. 405203 ◽  
Author(s):  
Chao Liu ◽  
Hongjian Li ◽  
Hui Xu ◽  
Mingzhuo Zhao ◽  
Cuixiu Xiong ◽  
...  

Plasmonics ◽  
2021 ◽  
Author(s):  
Hao Chen ◽  
Lei Xiong ◽  
Fangrong Hu ◽  
Yuanjiang Xiang ◽  
Xiaoyu Dai ◽  
...  

2015 ◽  
Vol 27 (11) ◽  
pp. 1177-1180 ◽  
Author(s):  
Jiakun Song ◽  
Jietao Liu ◽  
Yuzhi Song ◽  
Kangwen Li ◽  
Zuyin Zhang ◽  
...  

2018 ◽  
Vol 52 (2) ◽  
pp. 025104 ◽  
Author(s):  
Hui Xu ◽  
Mingzhuo Zhao ◽  
Mingfei Zheng ◽  
Cuixiu Xiong ◽  
Baihui Zhang ◽  
...  

2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Zhimin Liu ◽  
Enduo Gao ◽  
Zhenbin Zhang ◽  
Hongjian Li ◽  
Hui Xu ◽  
...  

AbstractThe plasmon-induced transparency (PIT), which is destructive interference between the superradiation mode and the subradiation mode, is studied in patterned graphene-based terahertz metasurface composed of graphene ribbons and graphene strips. As the results of finite-difference time-domain (FDTD) simulation and coupled-mode theory (CMT) fitting, the PIT can be dynamically modulated by the dual-mode. The left (right) transmission dip is mainly tailored by the gate voltage applied to graphene ribbons (stripes), respectively, meaning a dual-mode on-to-off modulator is realized. Surprisingly, an absorbance of 50% and slow-light property of 0.7 ps are also achieved, demonstrating the proposed PIT metasurface has important applications in absorption and slow-light. In addition, coupling effects between the graphene ribbons and the graphene strips in PIT metasurface with different structural parameters also are studied in detail. Thus, the proposed structure provides a new basis for the dual-mode on-to-off multi-function modulators.


2015 ◽  
Vol 351 ◽  
pp. 26-29 ◽  
Author(s):  
Chunlei Li ◽  
Dawei Qi ◽  
Yuxiao Wang ◽  
Xueru Zhang

Materials ◽  
2018 ◽  
Vol 11 (6) ◽  
pp. 941 ◽  
Author(s):  
Zhaojian Zhang ◽  
Junbo Yang ◽  
Xin He ◽  
Yunxin Han ◽  
Jingjing Zhang ◽  
...  

2015 ◽  
Vol 17 (5) ◽  
pp. 055002 ◽  
Author(s):  
Jinna He ◽  
Junqiao Wang ◽  
Pei Ding ◽  
Chunzhen Fan ◽  
Erjun Liang

Sign in / Sign up

Export Citation Format

Share Document