Applications of Optical and Electronic Instrumentation on Secure Long-Distance Quantum Communications in Optical Fibers

Author(s):  
Guilherme B. Xavier
2017 ◽  
Vol 17 (2) ◽  
pp. 36
Author(s):  
Dadin Mahmudin ◽  
Shobih ◽  
Pamungkas Daud ◽  
Yusuf Nur Wijayanto

Optical waveguides are important for guiding lightwave from a place to other places. Propagation and insertion losses of the optical waveguides should be considered to be in low values. Recently, optical waveguides with circular structures, which are optical fibers, are used widely for guiding lightwave in long-distance optical communication with very low propagation and insertion losses. Simultaneously, optical waveguides with planar structure are also developed for short distance communication in optical devices. We have reported design and analysis of the planar optical waveguides. In this paper, fabrication of planar optical waveguides using a polyimide material on thin silicon dioxide combined with the silicon substrate is reported. The polyimide material is used for the core of the optical waveguides. The silicon dioxide located on the silicon substrate and the air is used for cladding of the optical waveguides. Fabrication of the optical waveguides such as oxidation, photoresist coating, masking, ultra-violet exposure, and etching was done. The fabricated optical waveguides were characterized physically using a standard microscope and scanning electron microscope (SEM). The fabrication processes and characterization results are reported and discussed in detail.


2007 ◽  
Vol 334-335 ◽  
pp. 1013-1016
Author(s):  
Tadahito Mizutani ◽  
Takafumi Nishi ◽  
Nobuo Takeda

Although demand for composite structures rapidly increase due to the advantages in weight, there are few effective assessment techniques to enable the quality control and guarantee the durability. In particular, an invisible microscopic damage detection technology is highly required because damages such as transverse cracks, debondings, or delaminations can lead to the critical failure of the structures. Among many non-destructive evaluation (NDE) methods for composite structures, fiber optic sensors are especially attractive due to the high sensitivity, the lightweight, and the small size. In the current trend of the structural health monitoring technology, fiber Bragg gratings (FBG) sensors are frequently used as strain or temperature sensors, and Brillouin scattering sensors are also often used for a long distance distributed measurement. The Brillouin distributed sensors can measure strain over a distance of 10km while a spatial resolution was limited to 1m. Some novel sensing method is proposed to improve the spatial resolution. The pulse-prepump Brillouin optical time domain analysis (PPP-BOTDA) is one of the latest distributed sensing applications with a cm-order high spatial resolution. The PPP-BOTDA commercial product has the spatial resolution of 10cm, and can measure the strain with a precision of ±25og. This precision, however, can be achieved by using conventional single-mode optical fibers. In our research, small-diameter optical fibers with a cladding diameter of 40om were embedded in the CFRP laminate to avoid the deterioration of the CFRP mechanical properties. Thus, in order to verify the performance of PPP-BOTDA, the distributed strain measurement was conducted with the small-diameter optical fibers embedded in the CFRP laminate.


Author(s):  
Thiago Ferreira da Silva ◽  
Douglas Vitoreti ◽  
Guilherme B. Xavier ◽  
Guilherme P. Temporão ◽  
Jean Pierre von der Weid

2010 ◽  
Author(s):  
R. Hostein ◽  
M. Larqué ◽  
D. Elvira ◽  
B. Fain ◽  
A. Michon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document