scholarly journals Fabrication of Polyimide Optical Waveguide on Silicon Dioxide Layer Stacked Silicon Substrate

2017 ◽  
Vol 17 (2) ◽  
pp. 36
Author(s):  
Dadin Mahmudin ◽  
Shobih ◽  
Pamungkas Daud ◽  
Yusuf Nur Wijayanto

Optical waveguides are important for guiding lightwave from a place to other places. Propagation and insertion losses of the optical waveguides should be considered to be in low values. Recently, optical waveguides with circular structures, which are optical fibers, are used widely for guiding lightwave in long-distance optical communication with very low propagation and insertion losses. Simultaneously, optical waveguides with planar structure are also developed for short distance communication in optical devices. We have reported design and analysis of the planar optical waveguides. In this paper, fabrication of planar optical waveguides using a polyimide material on thin silicon dioxide combined with the silicon substrate is reported. The polyimide material is used for the core of the optical waveguides. The silicon dioxide located on the silicon substrate and the air is used for cladding of the optical waveguides. Fabrication of the optical waveguides such as oxidation, photoresist coating, masking, ultra-violet exposure, and etching was done. The fabricated optical waveguides were characterized physically using a standard microscope and scanning electron microscope (SEM). The fabrication processes and characterization results are reported and discussed in detail.

Author(s):  
L. C. Maxey ◽  
M. R. Cates ◽  
S. L. Jaiswal

Optical couplings in large core optical waveguides have many similarities with those in conventional optical fibers but pose some unconventional challenges as well. The larger geometry, looser manufacturing tolerances and reduced dimensional stability compound the problems associated with making low-loss couplings in large core waveguides. The individual factors contributing to coupling losses are discussed to develop an understanding of the extant loss mechanisms. Individual methods and materials employed to mitigate the impact of each of the dominant loss mechanisms are discussed in detail. A combination of endface geometry control, axial alignment constraint and refractive index matching are employed to produce highly efficient optical couplings in large core waveguides. The combination of these elements has significantly reduced the insertion losses due to connector couplings. Prior to implementing the current methods losses of 15% and greater were common but these have been reduced to 2%–5% with the current methods.


The improvement in technology over long distance communication using optical fiber has been regulated over past few decades, and it took drastic enhancement in one of the major parameter for joining two OFC cable (splicing). The different experiments performed in order to bring about the result that can give nearly 0dB splice loss when there is shifting of entire set up of Optical Fiber Communication. The splicing loss is created by the joining of two SMF using fiber optic fusion splicing. The objective of this paper is to determine the low splice loss in joining two single mode or multimode optical fiber, such that long distance communication that required multiple infrastructure assembly for its operational unit can be made relocatable as there is large investment and material and electronic circuitry is associated to it. Therefore to reduce that cost we have sets of analysis that splicing loss can be reduced to 0dB for SMFSMF end face connection or at least no improvement in splice losses while relocation of OFC infrastructure from one place to other place as the result of the tested experiment. Based on experiment conducted we came to conclusion that with essential requirements for establishing a low-loss and high-speed communication line using optical fibers, the need for quality of splicing technology along with perfect core alignment angle is required to reduce splice loss, such that the infrastructure can be shifted to many different location without any additional cost of new material and new resources. The exact measurement of splice loss can be insured by another set of formula which we came across during the experimental performance.


Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 940
Author(s):  
Nicoleta Cristina Gaitan

Recent market studies show that the market for remote monitoring devices of different medical parameters will grow exponentially. Globally, more than 4 million individuals will be monitored remotely from the perspective of different health parameters by 2023. Of particular importance is the way of remote transmission of the information acquired from the medical sensors. At this time, there are several methods such as Bluetooth, WI-FI, or other wireless communication interfaces. Recently, the communication based on LoRa (Long Range) technology has had an explosive development that allows the transmission of information over long distances with low energy consumption. The implementation of the IoT (Internet of Things) applications using LoRa devices based on open Long Range Wide-Area Network (LoRaWAN) protocol for long distances with low energy consumption can also be used in the medical field. Therefore, in this paper, we proposed and developed a long-distance communication architecture for medical devices based on the LoRaWAN protocol that allows data communications over a distance of more than 10 km.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Filip Rozpędek ◽  
Kyungjoo Noh ◽  
Qian Xu ◽  
Saikat Guha ◽  
Liang Jiang

AbstractWe propose an architecture of quantum-error-correction-based quantum repeaters that combines techniques used in discrete- and continuous-variable quantum information. Specifically, we propose to encode the transmitted qubits in a concatenated code consisting of two levels. On the first level we use a continuous-variable GKP code encoding the qubit in a single bosonic mode. On the second level we use a small discrete-variable code. Such an architecture has two important features. Firstly, errors on each of the two levels are corrected in repeaters of two different types. This enables for achieving performance needed in practical scenarios with a reduced cost with respect to an architecture for which all repeaters are the same. Secondly, the use of continuous-variable GKP code on the lower level generates additional analog information which enhances the error-correcting capabilities of the second-level code such that long-distance communication becomes possible with encodings consisting of only four or seven optical modes.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1972
Author(s):  
Agnieszka Gierej ◽  
Thomas Geernaert ◽  
Sandra Van Vlierberghe ◽  
Peter Dubruel ◽  
Hugo Thienpont ◽  
...  

The limited penetration depth of visible light in biological tissues has encouraged researchers to develop novel implantable light-guiding devices. Optical fibers and waveguides that are made from biocompatible and biodegradable materials offer a straightforward but effective approach to overcome this issue. In the last decade, various optically transparent biomaterials, as well as different fabrication techniques, have been investigated for this purpose, and in view of obtaining fully fledged optical fibers. This article reviews the state-of-the-art in the development of biocompatible and biodegradable optical fibers. Whilst several reviews that focus on the chemical properties of the biomaterials from which these optical waveguides can be made have been published, a systematic review about the actual optical fibers made from these materials and the different fabrication processes is not available yet. This prompted us to investigate the essential properties of these biomaterials, in view of fabricating optical fibers, and in particular to look into the issues related to fabrication techniques, and also to discuss the challenges in the use and operation of these optical fibers. We close our review with a summary and an outline of the applications that may benefit from these novel optical waveguides.


Sign in / Sign up

Export Citation Format

Share Document