Flexible Transceiver with Format-Transparent Digital Signal Processing for Ultra-large Data-rate Transmissions

Author(s):  
Qunbi Zhuge ◽  
Mohamed Morsy-Osman ◽  
Xian Xu ◽  
Mathieu Chagnon ◽  
Meng Qiu ◽  
...  
2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Guillermo A. Jaquenod ◽  
Javier Valls ◽  
Javier Siman

In digital communications, an usual reception chain requires many stages of digital signal processing for filtering and sample rate reduction. For satellite on board applications, this need is hardly constrained by the very limited hardware resources available in space qualified FPGAs. This short paper focuses on the implementation of a dual chain of 14 stages of cascaded half band filters plus 2 : 1 decimators for complex signals (in-phase and quadrature) with minimal hardware resources, using a small portion of an UT6325 Aeroflex FPGA, as a part of a receiver designed for a low data rate command and telemetry channel.


2019 ◽  
pp. 34-39 ◽  
Author(s):  
E.I. Chernov ◽  
N.E. Sobolev ◽  
A.A. Bondarchuk ◽  
L.E. Aristarhova

The concept of hidden correlation of noise signals is introduced. The existence of a hidden correlation between narrowband noise signals isolated simultaneously from broadband band-limited noise is theoretically proved. A method for estimating the latent correlation of narrowband noise signals has been developed and experimentally investigated. As a result of the experiment, where a time frag ent of band-limited noise, the basis of which is shot noise, is used as the studied signal, it is established: when applying the Pearson criterion, there is practically no correlation between the signal at the Central frequency and the sum of signals at mirror frequencies; when applying the proposed method for the analysis of the same signals, a strong hidden correlation is found. The proposed method is useful for researchers, engineers and metrologists engaged in digital signal processing, as well as developers of measuring instruments using a new technology for isolating a useful signal from noise – the method of mirror noise images.


Sign in / Sign up

Export Citation Format

Share Document