Russian Geology and Geophysics
Latest Publications


TOTAL DOCUMENTS

1835
(FIVE YEARS 303)

H-INDEX

40
(FIVE YEARS 2)

Published By Publishing House Sb Ras

1068-7971

Author(s):  
M. Mohammadzadeh Moghaddam ◽  
S. Mirzaei ◽  
M. Abedi

Abstract —New insights in the aeromagnetic data over the Central Iranian Microcontinent (CIM) have revealed interesting results for future studies and exploration. This work presents the interpretation of different magnetic analyses and the calculated 3D inversion model to provide important insights into the distribution of igneous rocks in the area that may be traced under significant cover. By analyzing several hundred magnetic susceptibility data points and aeromagnetic anomalies of known igneous rocks over the area, it was determined that mafic–ultramafic intrusive rocks generally have a high magnetic susceptibility and produce a strong magnetic response. Intermediate–felsic intrusive rocks have a low magnetic susceptibility and show a smooth gradient variation and commonly regular shape. Volcanic rocks show a wide range of magnetic susceptibility; therefore, the aeromagnetic anomalies are often random or show strong amplitude with high frequency signals and are rapidly eliminated when an upward continuation is applied. Based on the results of analysis of different magnetic maps and 3D inversion of data, and combining this information with known outcropped of igneous rocks, we revealed 1215 concealed intrusive rocks and 528 volcanic rocks in the area. We also renewed the boundaries of tens outcropped igneous rocks. The known and new mapped igneous rocks can be identified as 12 regions (or zones) for intrusive rocks and 4 regions for volcanic rocks. The results indicate that the mafic–ultramafic rocks are mainly located in the Sistan suture zone of eastern Iran along the Nehbandan fault zone. They also show that the many parts of the Lut block as the main structure of CIM have been under magmatic events, so that most of concealed igneous rocks are distributed in the middle and southern part of the Lut block. Volcanic rocks are widespread in the southeastern and northern parts of the area such as the Urumieh-Dokhtar Magmatic Arc, North Lut, and Bam region.


Author(s):  
D.V. Metelkin ◽  
V.V. Abashev ◽  
V.A. Vernikovsky ◽  
N.E. Mikhaltsov

Abstract —We report new paleomagnetic and geochronological data for rocks of the Franz Josef Land archipelago and generalize available information about the paleomagnetism of the Barents Sea continental margin as applied to the issues of the Mesozoic Arctic tectonics. Specifically, the obtained age estimates are indicative of a brief episode of mantle plume magmatism at the Barremian–Aptian boundary (Early Cretaceous). The paleomagnetic data shows that intraplate magmatism formations in the High Arctic, including the Franz Josef Land traps, are nothing else than a trace of the Iceland plume on the migrating tectonic plates of the region. Thus, the Iceland plume was geographically stationary for at least the last 125 Myr. Our paleotectonic reconstructions suggest a direct connection of the intraplate strike-slip systems of the Eurasian continent with the configuration and subsequent evolution mode of Mesozoic marginal basins and spreading axes during the initial opening stage of the Arctic Ocean.


Author(s):  
I.Yu. Koulakov

Abstract —The Kamchatka Peninsula is one of the most tectonically active regions in the world, where intensive and diverse modern volcanic activity takes place. In the recent decade, substantial progress in the investigation of deep structures beneath Kamchatka has been achieved owing to numerous tomography studies based on seismological data provided by permanent stations and temporary networks deployed in some key areas. The goal of this review is summarizing and systematizing dozens of separate multiscale geophysical studies in Kamchatka and constructing an integral model of volcano-feeding systems. An important part of this review contains the description of results of various seismic studies related to the Klyuchevskoy group volcanoes, which can now be considered one of the best studied volcanic areas in the world. The results of the regional-scale seismic tomography reveal the existence of the Pacific slab window, which determines the particular activity of the Klyuchevskoy group volcanoes. Middle-scale tomography studies have found traces of an ascending hot mantle flow that passes through the slab window, reaches the bottom of the crust below Shiveluch Volcano, and then propagates laterally toward the Klyuchevskoy group. Seismic models of the entire crust in the area of the Klyuchevskoy group were used to identify different mechanisms of magmatic feeding of three most active volcanoes: Klyuchevskoy, Bezymianny, and Tolbachik. The data of local networks deployed on several volcanoes of Kamchatka were used to image the magma sources in the upper crust, which are directly responsible for the current eruption activity. The comparison of the results for the Kamchatka volcanoes with tomography models of several other volcanoes of the world allowed determining some common features and differences in feeding active magmatic systems.


2021 ◽  
Vol 62 (12) ◽  
pp. 1430-1439
Author(s):  
V.S. Mogilatov ◽  
V.V. Potapov ◽  
A.N. Shein ◽  
V.A. Gur’ev

Abstract —A mathematical model of the influence of the Earth’s magnetic field (the Hall effect) on results of the controlled source transient electromagnetic (TEM) method has been elaborated. For identification of this effect, we propose a schematic layout of the experimental grounded system with a pulsed loop source and signals recording by radial receive lines equally spaced relative to the loop. The 2018–2019 special field experiments were conducted in the Tatar region of the West Siberian Lowland with an aim to estimate the Hall effect contributions to the TEM method. To detect the Hall effect, transient electromagnetic responses were measured mainly by four receive lines radiating from a 500×500 m square loop. Analysis of the TEM results processing aimed at improving the signal quality and reducing the interference revealed a great similarity in signals from the radial lines, which is theoretically possible only under the Hall effect. Comparison of the field signals with the theoretical ones enabled estimation of the components caused by the Hall effect, in particular, conductivity at ~0.002 S/m.


2021 ◽  
Vol 62 (12) ◽  
pp. 1373-1384
Author(s):  
V.V. Mukhametshin

Abstract —Using image recognition methods (principal component method (PCM) and discriminant analysis) made it possible to group and identify more than 500 research objects developed in five oil and gas areas of the West Siberian oil and gas province (WSOGP), which are confined to 13 large tectonic structures and 10 productive horizons. The grouping was made according to 19 parameters characterizing the mode of oil and gas occurrence and the geologic–physical and physicochemical properties of the reservoirs and hosted fluids exerting a prevailing influence on the recovery of oil reserves and used on projecting the development of research objects. The performed study has identified 19 relatively homogeneous groups of objects, each having a specific set of geologic–physical properties. It is shown that the parameters reflecting the geologic–physical and physicochemical properties of the reservoirs and fluids within the identified groups of objects exert different effects on the recovery of oil reserves. This requires differentiation and grouping of the objects during the solution of various development problems. It has been established that the specific features of groups of objects are determined primarily by areal, tectonic, and stratigraphic factors and that grouping must be performed separately in each stratigraphic system. Algorithms are proposed for grouping the developed oil and gas fields and for searching for groups of analogous objects in fields out of exploration that are most similar to the developed ones. The performed grouping and the results obtained provide the necessary information about the research objects and increase its reliability, thus making it possible to improve the efficiency of managing the oil company assets, i.e., the WSOGP oil fields.


2021 ◽  
Vol 62 (12) ◽  
pp. 1440-1448
Author(s):  
N.O. Kozhevnikov ◽  
E.Yu. Antonov

Abstract —Inductively induced electric polarization (IIP) is one of the aftereffects inherent in the geologic materials and affecting results of the transient electromagnetic method. Its effect on the inductive transient response manifests itself as a nonmonotonic EMF decay, including the polarity reversal. The dependence of IIP on many conditions makes it difficult to study the basic regularities in its manifestation. One of the ways to address this problem is to present the simulation results as a normalized transient response. From the most general point of view, the intensity and time range of the IIP manifestation are controlled by the competition between induction and induced polarization phenomena. Induced polarization manifests itself differently, depending on the transmitter used for the excitation of the ground response. Therefore, when studying polarizable ground, the results of the conventional IP method and those of the TEM method do not always correlate.


2021 ◽  
Vol 62 (12) ◽  
pp. 1331-1349
Author(s):  
V.B. Khubanov ◽  
A.A. Tsygankov ◽  
G.N. Burmakina

Abstract —We present results of U–Pb (LA-ICP-MS) dating of detrital zircons from the alluvial deposits of the Angarakan River (North Muya Ridge, northern Baikal region), whose drainage basin is composed mainly of granitoids of the Barguzin Complex, typomorphic for the late Paleozoic Angara–Vitim batholith (AVB). Three age clusters with peaks at 728, 423, and 314 Ma have been identified in the studied population of detrital zircons. It is shown that small outliers of igneous and metamorphic rocks, probably similar to the large AVB roof pendants mapped beyond the drainage basin, are the source of Neoproterozoic and early Paleozoic zircons. The late Paleozoic cluster comprises two close peaks at 314 and 28 Ma, which totally “overlap” with the time of the AVB formation and mark a granitoid source of the zircons. The results of detrital-zircon geochronology, together with the data on bedrocks, point to the prolonged (~40 Myr) formation of the AVB, but the intensity of magmatism during this period calls for additional study. Based on the analysis of published geological, geochemical, and geochronological data, we assume that the AVB resulted from the plume–lithosphere interaction that began in the compression setting and gave way to extension 305–300 Ma (the Carboniferous–Permian boundary), which caused replacement of “crustal” granitoids by granitoids formed from a mixed mantle–crustal source.


2021 ◽  
Vol 62 (12) ◽  
pp. 1359-1372
Author(s):  
V.S. Zykin ◽  
V.S. Zykina ◽  
D.G. Malikov ◽  
L.G. Smolyaninova ◽  
O.B. Kuzmina

Abstract —The Quaternary stratigraphy of the southern West Siberian Plain is considered in the context of the updated International Chronostratigraphic Scale, with the Neogene/Quarternary boundary at 2.588 Ma. New geological, lithological, paleontological, and paleomagnetic data from a reference Quaternary section in the Irtysh River valley near Isakovka Village provide more rigorous constraints on the Lower–Middle Pleistocene stratigraphy and the respective deposition conditions. The Isakovka outcrop exposes two stratigraphically expressed and paleontologically characterized units that were deposited during regional Pleistocene interglacial events of different ages: the Strunino and Serebryanoe alluvium beds lying over eroded surfaces. The species of the Corbicula genus coexisting with numerous species of Palearctic molluscs, small mammals Allophaiomys deucalion, Mimomys reidi, and last rooted lagurids Borsodia found in the Strunino alluvium are known also from continental equivalents of the warm upper Gelasian Stage in different parts of northern Eurasia. Judging by the presence of extant corbicules, the Strunino alluvium was deposited in a warm climate, with a mean annual air temperature above +16 °C and a mean winter temperature no colder than –8 °C, in rivers that remained free from ice all year round. On the basis of fauna constraints for the Serebryanoe alluvium, along with the first appearance of the European Pisidium clessini molluscs in West Siberia, the unit can be correlated with one of the earliest Middle Pleistocene interglacial events. The faunal assemblages and spore-pollen patterns of the two units indicate that the climate during the Serebryanoe deposition was slightly cooler and wetter than during the Strunino deposition, though steppe landscapes predominated on watersheds in both events. The two alluvial beds, which are traceable in river bluffs, at 30 m above the modern water level in a tectonically stable part of West Siberia, mark the hypsometrically higher position of the river network during the Early Pleistocene and early Middle Pleistocene interglacials.


2021 ◽  
Vol 62 (12) ◽  
pp. 1385-1400
Author(s):  
G.I. Mishukova ◽  
A.V. Yatsuk ◽  
R.B. Shakirov ◽  
N.S. Syrbu ◽  
M.G. Valitov ◽  
...  

Abstract —We present results of an integrated research into the spatial distribution of methane in the area of the northern closure of the Central Basin of the Sea of Japan and in the southern part of the Tatar Trough. Methane emissions have been revealed in the study area. The methane fluxes are distributed unevenly within the area (1 to 23 mol/(km2·day)). The discrete high-frequency measurements and calculation of methane fluxes at the water–atmosphere interface, combined with the study of the content of natural gases and microbiologic parameters in sediment cores, allow us to explain the formation of local methane emission zones in the water area. Despite the great sea depths, there are sources and fluid-conducting zones that determine methane concentrations (exceeding the equilibrium ones) and high methane emissions from the water area. The data obtained provide new information and suggest the presence of deep gas sources, which determine gas dispersion in the bottom sediments, the methane content in the surface water layer, and the distribution of methane fluxes at the water–atmosphere interface in the study area. This study is part of the integrated program of geological and geophysical expeditionary research performed by V.I. Il’ichev Pacific Oceanological Institute (Vladivostok) in the northern part of the Sea of Japan.


2021 ◽  
Vol 62 (12) ◽  
pp. 1350-1358
Author(s):  
I.V. Korovnikov ◽  
F.D. Lazarev

Abstract —Based on the materials collected by L.N. Repina in the southern Hövsgöl area (Mongolia) in 1986–1988, we describe three sections and identify lower Cambrian trilobites. The sections of Mt. Hurtel Harna and along the Ujigin Gol River were studied earlier. We consider trilobites that have been found in these sections for the first time: Redlihia zharkovi, Lermontoviella shanganica, Erbia granulosa, Kootenia siberica, and Parapoulsenia lata. The section along the ravine of the Zuun-Shuvuutyn-Sair Brook and the findings of trilobites in it are described for the first time. The found new trilobites make it possible to correlate the coeval lower Cambrian strata in the southern Hövsgöl area, Altai–Sayan folded area, and western Siberian Platform and refine the age of the certain parts of the Egyin Gol, Ukhaa Tolgoi, and Ujigin Gol formations.


Sign in / Sign up

Export Citation Format

Share Document