scholarly journals Novel real-time homodyne coherent receiver using a feed-forward based carrier extraction scheme for phase modulated signals

2011 ◽  
Vol 19 (9) ◽  
pp. 8320 ◽  
Author(s):  
Selwan K. Ibrahim ◽  
Stylianos Sygletos ◽  
Ruwan Weerasuriya ◽  
Andrew D. Ellis
2011 ◽  
Vol 19 (10) ◽  
pp. 9445 ◽  
Author(s):  
Selwan K. Ibrahim ◽  
Stylianos Sygletos ◽  
Danish Rafique ◽  
John A. O’Dowd ◽  
Ruwan Weerasuriya ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yaghoub Dabiri ◽  
Alex Van der Velden ◽  
Kevin L. Sack ◽  
Jenny S. Choy ◽  
Julius M. Guccione ◽  
...  

AbstractAn understanding of left ventricle (LV) mechanics is fundamental for designing better preventive, diagnostic, and treatment strategies for improved heart function. Because of the costs of clinical and experimental studies to treat and understand heart function, respectively, in-silico models play an important role. Finite element (FE) models, which have been used to create in-silico LV models for different cardiac health and disease conditions, as well as cardiac device design, are time-consuming and require powerful computational resources, which limits their use when real-time results are needed. As an alternative, we sought to use deep learning (DL) for LV in-silico modeling. We used 80 four-chamber heart FE models for feed forward, as well as recurrent neural network (RNN) with long short-term memory (LSTM) models for LV pressure and volume. We used 120 LV-only FE models for training LV stress predictions. The active material properties of the myocardium and time were features for the LV pressure and volume training, and passive material properties and element centroid coordinates were features of the LV stress prediction models. For six test FE models, the DL error for LV volume was 1.599 ± 1.227 ml, and the error for pressure was 1.257 ± 0.488 mmHg; for 20 LV FE test examples, the mean absolute errors were, respectively, 0.179 ± 0.050 for myofiber, 0.049 ± 0.017 for cross-fiber, and 0.039 ± 0.011 kPa for shear stress. After training, the DL runtime was in the order of seconds whereas equivalent FE runtime was in the order of several hours (pressure and volume) or 20 min (stress). We conclude that using DL, LV in-silico simulations can be provided for applications requiring real-time results.


2020 ◽  
Vol 12 ◽  
pp. 100081
Author(s):  
L.D. Hashan Peiris ◽  
Andreas Bartl ◽  
Jonathan L. du Bois ◽  
Andrew Plummer
Keyword(s):  

Author(s):  
Panini Kolavennu ◽  
Susanta K. Das ◽  
K. Joel Berry

A robust control strategy which ensures optimum performance is crucial to proton exchange membrane (PEM) fuel cell development. In a PEM fuel cell stack, the primary control variables are the reactant’s stochiometric ratio, membrane’s relative humidity and operating pressure of the anode and cathode. In this study, a 5 kW (25-cell) PEM fuel cell stack is experimentally evaluated under various operating conditions. Using the extensive experimental data of voltage-current characteristics, a feed forward control strategy based on a 3D surface map of cathode pressure, current density and membrane humidity at different operating voltages is developed. The effectiveness of the feed forward control strategy is tested on the Green-light testing facility. To reduce the dependence on predetermined system parameters, real-time optimization based on extremum seeking algorithm is proposed to control the air flow rate into the cathode of the PEM fuel cell stack. The quantitative results obtained from the experiments show good potential towards achieving effective control of PEM fuel cell stack.


Sign in / Sign up

Export Citation Format

Share Document