scholarly journals Growth model for laser-induced damage on the exit surface of fused silica under UV, ns laser irradiation

2014 ◽  
Vol 22 (4) ◽  
pp. 3824 ◽  
Author(s):  
Raluca A. Negres ◽  
David A. Cross ◽  
Zhi M. Liao ◽  
Manyalibo J. Matthews ◽  
Christopher W. Carr
Optik ◽  
2019 ◽  
Vol 194 ◽  
pp. 163053
Author(s):  
Yi Chen ◽  
Sensen Li ◽  
Xiangyu Qu ◽  
Pengyuan Du ◽  
Lei Ding ◽  
...  

2015 ◽  
Author(s):  
Stavros G. Demos ◽  
Raluca A. Negres ◽  
Rajesh N. Raman ◽  
Michael D. Feit ◽  
Kenneth R. Manes ◽  
...  

2022 ◽  
Vol 32 ◽  
pp. 105094
Author(s):  
Chengyu Zhu ◽  
Lingxi Liang ◽  
Ge Peng ◽  
Hang Yuan ◽  
Luoxian Zhou ◽  
...  

Author(s):  
Matthieu Veinhard ◽  
Laurent Lamaignère ◽  
Odile Bonville ◽  
Roger Courchinoux ◽  
Romain Parreault ◽  
...  

2012 ◽  
Vol 24 (5) ◽  
pp. 1057-1062 ◽  
Author(s):  
邱荣 Qiu Rong ◽  
王俊波 Wang Junbo ◽  
任欢 Ren Huan ◽  
李晓红 Li Xiaohong ◽  
施鹏程 Shi Pengcheng ◽  
...  

2010 ◽  
Vol 18 (19) ◽  
pp. 19966 ◽  
Author(s):  
Raluca A. Negres ◽  
Mary A. Norton ◽  
David A. Cross ◽  
Christopher W. Carr

Optik ◽  
2021 ◽  
Vol 226 ◽  
pp. 165549
Author(s):  
Xiangxu Chai ◽  
Ping Li ◽  
Junpu Zhao ◽  
Guanzhong Wang ◽  
Deyan Zhu ◽  
...  

2013 ◽  
Vol 3 (6) ◽  
pp. 765 ◽  
Author(s):  
Rajesh N. Raman ◽  
Raluca A. Negres ◽  
Manyalibo J. Matthews ◽  
Christopher W. Carr

Author(s):  
Katharina Kuhn ◽  
Carmen U. Schmid ◽  
Ralph G. Luthardt ◽  
Heike Rudolph ◽  
Rolf Diebolder

AbstractInadvertent Er:YAG laser irradiation occurs in dentistry and may harm restorative materials in teeth. The aim of this in vitro study was to quantify Er:YAG laser-induced damage to a nanohybrid composite in simulated clinical scenarios for inadvertent direct and indirect (reflection) laser irradiation. The simulation was performed by varying the output energy (OE;direct˃indirect) reaching the specimen and the operating distance (OD;direct˂indirect). Composite specimens were irradiated by an Er:YAG laser. The ablation threshold was determined and clinically relevant parameters were applied (n = 6 for each OE/OD combination) for direct (OE: 570 mJ/OD: 10 mm, OE: 190 mJ/OD: 10 mm) and indirect irradiation (OE: 466 mJ/OD: 15 mm, OE: 57 mJ/OD: 15 mm, OE: 155 mJ/OD: 15 mm, OE: 19 mJ/OD: 15 mm). The extent of damage in the form of craters was evaluated using a laser scanning microscope (LSM) and a conventional light microscope (LM). The ablation threshold was determined to be 2.6 J/cm2. The crater diameter showed the highest value (LM: 1075 ± 18 µm/LSM: 1082 ± 17 µm) for indirect irradiation (reflectant:dental mirror) (OE: 466 mJ/OD: 15 mm). The crater depth showed the highest and comparable value for direct (OE: 570 mJ/OD: 10 mm; LSM: 89 ± 2 µm) and indirect irradiation (OE: 466 mJ/OD: 15 mm; LSM: 90 ± 4 µm). For each OD, the crater diameter, depth, and volume increased with higher laser fluence. However, the OD—and thus the laser spot diameter—also had an enlarging effect. Thus, indirect irradiation (reflectant:dental mirror) with only 47% of the laser fluence of direct irradiation led to a larger diameter and a comparable depth. The three-dimensional extent of the crater was large enough to cause roughening, which may lead to plaque accumulation and encourage caries, gingivitis, and periodontitis under clinical conditions. Clinicians should be aware that reflected irradiation can still create such craters.


Sign in / Sign up

Export Citation Format

Share Document