laser fluence
Recently Published Documents


TOTAL DOCUMENTS

396
(FIVE YEARS 80)

H-INDEX

26
(FIVE YEARS 7)

Laser Physics ◽  
2021 ◽  
Vol 32 (2) ◽  
pp. 026002
Author(s):  
M Asif ◽  
U Amin ◽  
Z U Rehman ◽  
R Ali ◽  
H Qayyum

Abstract Palladium plasma produced by nanosecond pulsed 532 nm and 1064 nm wavelengths lasers is studied with the help of planer Langmuir probe. The experiment is conducted over a wide range of the laser fluence (1.6–40 J cm−2). The measured time of flight ions distributions are used to infer total charge, kinetic energy of the palladium ions and plasma parameters. Our results indicate that the ion charge produced by both laser wavelengths is an increasing function of the laser fluence. Initially, the ion charge produced by 1064 nm is lower than 532 nm, but it increases at much faster rate with the rise of laser fluence as the inverse bremsstrahlung plasma heating prevails at higher plasma densities. The most probable kinetic energy of the Pd ions produced by 1064 nm wavelength is also lower than that of 532 nm. The time varying plasma electron temperature and electron density are derived from the current–voltage plots of the two plasmas. For both wavelengths, the electron temperature and electron density rapidly climb to a maximum value and then gradually decline with time. However, in case of the 532 nm, the electron temperature and electron density remain consistently high throughout the laser plasma. The results are compared the available literature and discussed by considering surface reflectivity, ablation rate of the Pd target and laser plasma heating. The results presented in this work will provide more insight into the process of laser ablation and can be useful for the development of laser-plasma ion sources.


2021 ◽  
Vol 2114 (1) ◽  
pp. 012001
Author(s):  
Walid K. Hamoudi ◽  
Janan M. Al-keedi ◽  
Susan I. Hassan ◽  
Noor R. Abdulhameed ◽  
Muna B. Mustafa

Abstract Background: For efficient laser tattoo removal, photodisruption of tissue can ensure a very powerful means to shutter ink granules. At very high laser intensity level, photodisruption dominates and selective photothermolysis will have secondary effect in clearing the tattoo ink. Lower laser fluence is all what to trigger non-linear photons absorption and the generation of exploding cavitation bubbles that can tremendously hammer the ink granules. Subjects, materials, and methods: Three domestic white rabbits; each received simultaneous injections of a color pigment tattoo under general anesthesia, followed by a single session of (1064) Q.S Nd: YAG nanosecond laser pulses for tattoo removal. Results and Discussion: Spectroscopic properties of black, dark brown and red tattoo inks were studied. Near threshold laser fluence was selected to select the optimum conditions for obtaining scar-free treatment. Histological images of the biopsies, taken after thirty days of laser treatment of black, dark brown and red tattoos showed a marked reduction in pigment granules size with no appearance of hyperplasia or inflammatory cells. Coexistence of macrophages was suggested to be responsible for actively phagocytizing the laser-dispersed tattoo fragments. Conclusion: skin biopsies have demonstrated ink granules local redistribution. Photodisruption at 1064nm laser effectively targeted black and dark brown tattoo pigments by the generation of cavitation bubbles. The weaker laser light absorption of red pigments at 1064nm only showed tattoo clearance when using 532nm wavelength.


2021 ◽  
Author(s):  
Huijuan Shen ◽  
Yaode Wang ◽  
Liang Cao ◽  
Ying Xie ◽  
Lu Wang ◽  
...  

Abstract The micro-stripe structure was prepared by laser interference induced forward transfer (LIIFT) technique, composed of Ag nano-particles (NPs). The effects of the film thickness with the carbon nano-particles mixed polyimide (CNPs@PI), Ag film thickness, and laser fluence were studied on the transferred micro-stripe structure. The periodic Ag micro-stripe with good resolution was obtained in a wide range of CNPs@PI film thickness from ~ 0.5 μm to ~ 1.0 μm for the Ag thin film ~ 20 nm. The distribution of the Ag NPs composing the micro-stripe was compact. Nevertheless, the average size of the transferred Ag NPs was increased from ~ 41 nm to ~ 197 nm with the change of the Ag donor film from ~ 10 nm to ~ 40 nm. With the increase of the laser fluence from 102 mJ•cm-2 to 306 mJ•cm-2 per-beam, the transferred Ag NPs became aggregative, improving the resolution of the corresponding micro-stripe. Finally, the transferred Ag micro-stripe exhibited the significant surface enhanced Raman scattering (SERS) property for rhodamine B (RhB). While the concentration of the RhB reached 10-10 mol•L-1, the Raman characteristic peaks of the RhB were still observed clearly at 622 cm-1, 1359 cm-1, and 1649 cm-1. These results indicate that the transferred Ag micro-stripe has potential application as a SERS chip in drug and food detection.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2389
Author(s):  
Zhen Zhao ◽  
Chaoqun Xia ◽  
Jianjun Yang

We report the formation of a sole long nanowire structure and the regular nanowire arrays inside a groove on the surface of Fe-based metallic glass upon irradiation of two temporally delayed femtosecond lasers with the identical linear polarization parallel and perpendicular to the groove, respectively. The regular structure formation can be well observed within the delay time of 20 ps for a given total laser fluence of F = 30 mJ/cm2 and within a total laser fluence range of F = 30–42 mJ/cm2 for a given delay time of 5 ps. The structural features, including the unit width and distribution period, are measured on a one-hundred nanometer scale, much less than the incident laser wavelength of 800 nm. The degree of structure regularity sharply contrasts with traditional observations. To comprehensively understand such phenomena, we propose a new physical model by considering the spin angular momentum of surface plasmon and its enhanced inhomogeneous magnetization for the ferromagnetic metal. Therefore, an intensive TE polarized magnetic surface wave is excited to result in the nanometer-scaled energy fringes and the ablative troughs. The theory is further verified by the observation of nanowire structure disappearance at the larger time delays of two laser pulses.


2021 ◽  
Author(s):  
Ruoyang Yuan ◽  
Prem Lobo ◽  
Greg J. Smallwood ◽  
Mark P. Johnson ◽  
Matthew C. Parker ◽  
...  

Abstract. A new regulatory standard for non-volatile particulate matter (nvPM) mass concentration emissions from aircraft engines has been adopted by the International Civil Aviation Organisation. One of the instruments used for the regulatory nvPM mass emissions measurements in aircraft engine certification tests is the Artium Technologies LII 300, which is based on laser-induced incandescence. The LII 300 has been shown in some cases to demonstrate a variation in response to the type of black carbon particle measured. Hence it is important to identify a suitable black carbon emission source for instrument calibration. In this study, the relationship between the nvPM emissions produced by different engine sources and the response of the LII 300 instrument utilising auto-compensating laser-induced incandescence (AC-LII) method was investigated. Six different sources were used, including a turboshaft helicopter engine, a diesel generator, an intermediate pressure test rig of a single sector combustor, an auxiliary power unit gas turbine engine, a medium-sized diesel engine, and a downsized turbocharged direct injection gasoline engine. Optimum LII 300 laser fluence levels were determined for each source and operating condition evaluated. It was found that an optimised laser fluence can be valid for real-time measurements from a variety of sources, where the mass concentration was independent of laser fluence levels covering the typical operating ranges for the various sources. However, it is important to perform laser fluence sweeps to determine the optimum fluence range, as differences were observed in the laser fluence required, between sources and fuels. We discuss the measurement merits, variability, and best practices in the real-time quantification of nvPM mass concentration using the LII 300 instrument, and compare that with other diagnostic techniques, namely absorption–based methods such as photoacoustic spectroscopy using a photoacoustic extinctiometer (PAX) and a Micro Soot Sensor (MSS), and thermal-optical analysis (TOA). Particle size distributions were also measured using a scanning mobility particle sizer (SMPS). Overall, the LII 300 provides robust and consistent results when compared with the other diagnostic techniques across multiple engine sources and fuels. The results from this study will inform the development of updated calibration protocols to ensure repeatable and reproducible measurements of nvPM mass emissions from aircraft engines using the LII 300.


2021 ◽  
Vol 127 (9) ◽  
Author(s):  
A. Feuer ◽  
R. Weber ◽  
R. Feuer ◽  
D. Brinkmeier ◽  
T. Graf

AbstractThe influence of the laser fluence on the quality of percussion-drilled holes was investigated both experimentally and by an analytical model. The study reveals that the edge quality of the drilled microholes depends on the laser fluence reaching the rear exit of the hole and changes with the number of pulses applied after breakthrough. The minimum fluence that must reach the hole’s exit in order to obtain high-quality microholes in stainless steel was experimentally found to be 2.8 times the ablation threshold.


2021 ◽  
Vol 42 (5) ◽  
Author(s):  
Honglin Yuan

The Fe isotope ratios can be a useful tracer of geochemistry, biogeochemistry, and the environmental redox state. In this study, we investigated the feasibility of Fe isotopic analysis in Fe-dominated minerals by 193 nm excimer ns laser ablation combined with Nu Plasma 1700 high resolution MC-ICP-MS without matrix-match calibration. Several important instrument parameters were investigated, such as the effect of the addition of nitrogen gas and water vapor, the effects of analytical parameters such as ablation mode, laser fluence, pulse repetition rate, spot size on Fe isotopic mass bias during analysis were investigated as well. The results showed that the effects of ablation mode, spot size, laser pulse repetition rate, and line scan speed can be neglected, while laser fluence and matrix effects had significant influence on the Fe isotopic mass bias at dry plasma condition. These problems can be minimized using consistent lower fluence (1.5‒3.5 J·cm-2), as well as the wet plasma conditions can significantly reduce the matrix effect in Fe isotopic analysis. Fortunately, with the water vapor and nitrogen gas addition after the ablation cell, an accurate and precise Fe isotope in pyrite, manganite, hematite, and chalcopyrite analysis by ns-LA-MC-ICP-MS can be achieved with non-matrix-matched calibration. The obtained accuracy and reproducibility of the in situ determinations of δ56FeIRMM-014 were both better than ± 0.10‰ (2 SD). This study indicated that there was a serious matrix effect in the Fe isotopic analysis of Fe-dominated minerals by ns- LA-MC-ICP-MS, and nitrogen gas mixed with water vapor-assisted ns- LA-MC-ICP-MS were an appealing option for the in situ Fe isotope analysis of Fe-dominated minerals with non-matrix-matched calibration.


Sign in / Sign up

Export Citation Format

Share Document