ablation threshold
Recently Published Documents


TOTAL DOCUMENTS

178
(FIVE YEARS 37)

H-INDEX

21
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Yao L. Wang ◽  
Noa W. F. Grooms ◽  
Samuel H Chung

Femtosecond lasers are capable of precise ablation that produce surgical dissections in vivo. The transverse and axial resolution of the laser damage inside the bulk are important parameters of ablation. The transverse resolution is routinely quantified, but the axial resolution is more difficult to measure and is less commonly performed. In some in vivo samples, fine dissections can also be difficult to visualize, but in vitro samples may allow clear imaging. Using a 1040-nm, 400-fs pulsed laser, we performed ablation inside agarose and glass, producing clear and persistent damage spots. Near the ablation threshold of both media, we found that the axial resolution is similar to the transverse resolution. We also ablated neuron cell bodies and fibers in C. elegans and demonstrate submicrometer resolution in both the transverse and axial directions, consistent with our results in agarose and glass. Using simple yet rigorous methods, we define the resolution of laser ablation in transparent media along all directions.


2021 ◽  
Vol 218 (24) ◽  
pp. 2170067
Author(s):  
Naveed Ullah ◽  
Jianlei Cui ◽  
Xiangyang Dong ◽  
Xuyang Fang ◽  
Jian Dou ◽  
...  

Author(s):  
I. M. Kornilovskiy

Purpose: To consider new possibilities of refractive modeling of the cornea by the radiation of an argon-fluorine excimer laser in ablative and subablative modes after saturation of the stroma with riboflavin. Materials and Methods: Experimental (20 pork, 90 rabbit eyes) and clinical studies on photorefractive and phototherapeutic operations with saturation of the corneal stroma with riboflavin (610 operations) were analyzed. To activate riboflavin, secondary radiation induced by exposure to ablative and subablative energy densities was used. A quick transition to energy densities below the ablation threshold without additional calibrations was carried out using a “Microscan Visum-500” excimer laser (Optosystems, Russia). An objective assessment of the refractive keratomodelling effect and visual results was carried out according to the data of complex optometric studies. Results: Experimental and clinical studies have shown the advantages of refractive keratomodeling by theradiation of an argon-fluorine excimer laser in ablative and subablative modes after saturation of the stroma with riboflavin. Isotonic 0.25% riboflavin solution did not affect the accuracy of refractive ablation and blocked the negative effect of induced secondary radiation on keratocytes and corneal nerves. This reduced the aseptic inflammatory response and the risk of developing an irreversible form of fibroplasia. Ablation with riboflavin initiated a damped crosslinking effect, which increased the photoprotective and strength properties of the thinned cornea. A refractive keratomodelling effect was found when energy densities were applied below the stromal ablation threshold. The magnitude of this refractive effect depended on the total radiation dose and the topography of the affected area. This approach made it possible to implement laser-induced refractive keratomodeling without ablation of the corneal stroma. Conclusion: Refractive modeling of the cornea by the radiation of an argon-fluorine excimer laser in ablative and subablative modes after saturation of the stroma with riboflavin opens up new possibilities in laser correction of ametropia.


Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1188
Author(s):  
Shuai Wang ◽  
Yaoyu Wang ◽  
Shizhuo Zhang ◽  
Lingfeng Wang ◽  
Shuai Chen ◽  
...  

Copper (Cu) is the main interconnect conductor for integrated circuits (IC), and its processing quality is very important to device performance. Herein, a hybrid process of plasma oxidation and femtosecond laser (fs-laser) ablation was proposed for the nanoscale precision removal of Cu in integrated circuits. In this hybrid process, the surface layer of Cu was oxidized to the copper oxide by plasma oxidation, and then the fs-laser with a laser fluence lower than the Cu ablation threshold was used to remove the copper oxide without damaging the underlying Cu. Theoretically, the surface temperature evolutions of Cu and copper oxide under the femtosecond laser were studied by the two-temperature model, and it was revealed that the ablation threshold of copper oxide is much lower than that of Cu. The experimental results showed that the ablation threshold of copper oxide is lower than that of Cu, which is consistent with the theoretical analysis. Using the hybrid process, a surface roughness of 3 nm and a removal accuracy of 4 nm were obtained in the process of Cu film processing, which were better than those obtained by fs-laser ablation. This demonstrated that the hybrid process has good application potential in the field of copper micromachining.


2021 ◽  
Vol 127 (9) ◽  
Author(s):  
A. Feuer ◽  
R. Weber ◽  
R. Feuer ◽  
D. Brinkmeier ◽  
T. Graf

AbstractThe influence of the laser fluence on the quality of percussion-drilled holes was investigated both experimentally and by an analytical model. The study reveals that the edge quality of the drilled microholes depends on the laser fluence reaching the rear exit of the hole and changes with the number of pulses applied after breakthrough. The minimum fluence that must reach the hole’s exit in order to obtain high-quality microholes in stainless steel was experimentally found to be 2.8 times the ablation threshold.


Author(s):  
Katharina Kuhn ◽  
Carmen U. Schmid ◽  
Ralph G. Luthardt ◽  
Heike Rudolph ◽  
Rolf Diebolder

AbstractInadvertent Er:YAG laser irradiation occurs in dentistry and may harm restorative materials in teeth. The aim of this in vitro study was to quantify Er:YAG laser-induced damage to a nanohybrid composite in simulated clinical scenarios for inadvertent direct and indirect (reflection) laser irradiation. The simulation was performed by varying the output energy (OE;direct˃indirect) reaching the specimen and the operating distance (OD;direct˂indirect). Composite specimens were irradiated by an Er:YAG laser. The ablation threshold was determined and clinically relevant parameters were applied (n = 6 for each OE/OD combination) for direct (OE: 570 mJ/OD: 10 mm, OE: 190 mJ/OD: 10 mm) and indirect irradiation (OE: 466 mJ/OD: 15 mm, OE: 57 mJ/OD: 15 mm, OE: 155 mJ/OD: 15 mm, OE: 19 mJ/OD: 15 mm). The extent of damage in the form of craters was evaluated using a laser scanning microscope (LSM) and a conventional light microscope (LM). The ablation threshold was determined to be 2.6 J/cm2. The crater diameter showed the highest value (LM: 1075 ± 18 µm/LSM: 1082 ± 17 µm) for indirect irradiation (reflectant:dental mirror) (OE: 466 mJ/OD: 15 mm). The crater depth showed the highest and comparable value for direct (OE: 570 mJ/OD: 10 mm; LSM: 89 ± 2 µm) and indirect irradiation (OE: 466 mJ/OD: 15 mm; LSM: 90 ± 4 µm). For each OD, the crater diameter, depth, and volume increased with higher laser fluence. However, the OD—and thus the laser spot diameter—also had an enlarging effect. Thus, indirect irradiation (reflectant:dental mirror) with only 47% of the laser fluence of direct irradiation led to a larger diameter and a comparable depth. The three-dimensional extent of the crater was large enough to cause roughening, which may lead to plaque accumulation and encourage caries, gingivitis, and periodontitis under clinical conditions. Clinicians should be aware that reflected irradiation can still create such craters.


2021 ◽  
Vol 18 (7) ◽  
pp. 076001
Author(s):  
A Yu Kharin ◽  
M S Grigoryeva ◽  
I N Zavestovskaya ◽  
V Yu Timoshenko

2021 ◽  
pp. 35-38
Author(s):  
I.M. Kornilovskiy ◽  

Purpose. To substantiate the expediency of using ablative and subablative energy densities of an argon-fluorine excimer laser for corneal crosslinking. Material and methods. In the period from 1 month to 6 years, the results of more than 500 photorefractive and phototherapeutic operations with saturation of the cornea with riboflavin and the effect of crosslinking were analyzed. To activate riboflavin, secondary radiation was used, induced by the use of ablative and subablative energy densities of an argon-fluorine excimer laser. For an objective assessment of the effect of excimer laser crosslinking, we used the techniques of computed keratotopography, aberrometry, optical coherence tomography, and densitometry. Results. Clinical observations have shown that in most cases of photorefractive surgery of the cornea for the prevention of keratoectasias, it is sufficient to carry out ablation after saturation of the corneal stroma with 0.25% isotonic riboflavin solution for 3-10 minutes, depending on the degree of ametropia and the volume of tissue removed. This provided photoprotective protection of deeper stromal structures from the negative effects of ablation-induced secondary radiation. At the same time, upon completion of ablation, secondary radiation initiated the effect of crosslinking in the adjacent layers, which did not violate the elastic properties of the cornea. In a number of cases, the cross-linking effect was enhanced by additional exposure to energy densities below the ablation threshold and the formation of a Bowman-like membrane structure on the ablation surface. For keratoconus and corneal pathology, without and in combination with keratoectasia, the technology of therapeutic cross-linking was used. This technology provided for the saturation of the stroma with 0.1% or 0.25% isotonic riboflavin solution and its activation by subablative radiation energy densities of an argon-fluorine excimer laser. During therapeutic crosslinking, according to OCT and densitometry, all the classic signs of traditional corneal crosslinking were revealed. Conclusion. The radiation of an argon-fluorine excimer laser with the use of ablative pulse energy densities can be recommended for prophylactic crosslinking in all cases of corneal thinning during photorefractive surgeries, while the use of energy densities below the ablation threshold allows for therapeutic crosslinking in keratoconus and corneal ectasias of various etiology. Key words: excimer laser crosslinking, cornea, keratoconus, photorefractive ablation, riboflavin.


2021 ◽  
Author(s):  
Yao L. Wang ◽  
Noa W. F. Grooms ◽  
Samuel H. Chung

Abstract Femtosecond lasers are capable of precise ablation inside transparent media, including glass and in vivo samples. The transverse and axial resolution of damage inside the bulk are important parameters of ablation. The transverse resolution is straightforward to measure, but the axial resolution is much more difficult to measure and rarely performed. Using a 1040-nm, 400-fs pulsed laser, we performed ablation inside glass with a transverse and axial resolution of 0.75 µm. By fitting damage spot measurements to theoretical predictions, we find an ablation threshold of 6.4 x 1012 W/cm2. We also ablated neuron cell bodies and fibers in C. elegans and demonstrate submicrometer resolution in both the transverse and axial directions, consistent with our results in glass. Using simple yet rigorous methods, we define the resolution of laser ablation in transparent media along all directions.


Sign in / Sign up

Export Citation Format

Share Document