A high-spectral resolution lidar for measuring tropospheric temperature profiles by means of Rayleigh-Brillouin scattering

2021 ◽  
Author(s):  
jiaqi xu ◽  
Benjamin Witschas ◽  
Pau Kableka ◽  
Kun Liang
2018 ◽  
Vol 176 ◽  
pp. 01016
Author(s):  
Caraty Yann ◽  
Hauchecorne Alain ◽  
Keckhut Philippe ◽  
Mariscal Jean-François ◽  
Dalmeida Eric

In theory, the HSRL method should expand the validity range of the atmospheric molecular density and temperature profiles of the Rayleigh LIDAR in the UTLS below 30 km, with an accuracy of 1 K, while suppressing the particle contribution. We tested a Spherical Fabry-Perot which achieves these performances while keeping a big flexibility in optical alignment. However, this device has some limitations (thermal drift and a possible partial depolarisation of the backscattered signal).


2015 ◽  
Vol 15 (23) ◽  
pp. 13453-13473 ◽  
Author(s):  
S. P. Burton ◽  
J. W. Hair ◽  
M. Kahnert ◽  
R. A. Ferrare ◽  
C. A. Hostetler ◽  
...  

Abstract. Linear particle depolarization ratio is presented for three case studies from the NASA Langley airborne High Spectral Resolution Lidar-2 HSRL-2). Particle depolarization ratio from lidar is an indicator of non-spherical particles and is sensitive to the fraction of non-spherical particles and their size. The HSRL-2 instrument measures depolarization at three wavelengths: 355, 532, and 1064 nm. The three measurement cases presented here include two cases of dust-dominated aerosol and one case of smoke aerosol. These cases have partial analogs in earlier HSRL-1 depolarization measurements at 532 and 1064 nm and in literature, but the availability of three wavelengths gives additional insight into different scenarios for non-spherical particles in the atmosphere. A case of transported Saharan dust has a spectral dependence with a peak of 0.30 at 532 nm with smaller particle depolarization ratios of 0.27 and 0.25 at 1064 and 355 nm, respectively. A case of aerosol containing locally generated wind-blown North American dust has a maximum of 0.38 at 1064 nm, decreasing to 0.37 and 0.24 at 532 and 355 nm, respectively. The cause of the maximum at 1064 nm is inferred to be very large particles that have not settled out of the dust layer. The smoke layer has the opposite spectral dependence, with the peak of 0.24 at 355 nm, decreasing to 0.09 and 0.02 at 532 and 1064 nm, respectively. The depolarization in the smoke case may be explained by the presence of coated soot aggregates. We note that in these specific case studies, the linear particle depolarization ratio for smoke and dust-dominated aerosol are more similar at 355 nm than at 532 nm, having possible implications for using the particle depolarization ratio at a single wavelength for aerosol typing.


2009 ◽  
Vol 26 (8) ◽  
pp. 1527-1541 ◽  
Author(s):  
Justin M. Sieglaff ◽  
Timothy J. Schmit ◽  
W. Paul Menzel ◽  
Steven A. Ackerman

Abstract A high spectral resolution geostationary sounder can make spectrally detailed measurements of the infrared spectrum at high temporal resolution, which provides unique information about the lower-tropospheric temperature and moisture structure. Within the infrared window region, many spectrally narrow, relatively weak water vapor absorption lines and one carbon dioxide absorption line exist. Frequent measurement of these absorption lines can provide critical information for monitoring the evolution of the lower-tropospheric thermodynamic state. This can improve short-term convective forecasts by monitoring regions of changing atmospheric stability. While providing valuable observations, the current geostationary sounders are spectrally broad and do not resolve the important spectrally narrow absorption lines needed to observe the planetary boundary layer. The usefulness of high spectral resolution measurements from polar-orbiting instruments has been shown in the literature, as has the usefulness of high temporal resolution measurements from geostationary instruments. Little attention has been given to the combination of high temporal along with high spectral resolution measurements. This paper demonstrates the potential utility of high temporal and high spectral resolution infrared radiances.


Sign in / Sign up

Export Citation Format

Share Document