Validating Mixed-Phase Cloud Optical Depth Retrieved From Infrared Observations With High Spectral Resolution Lidar

2008 ◽  
Vol 5 (2) ◽  
pp. 285-288 ◽  
Author(s):  
D.D. Turner ◽  
E.W. Eloranta
2014 ◽  
Vol 7 (12) ◽  
pp. 4317-4340 ◽  
Author(s):  
R. R. Rogers ◽  
M. A. Vaughan ◽  
C. A. Hostetler ◽  
S. P. Burton ◽  
R. A. Ferrare ◽  
...  

Abstract. The Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument onboard the Cloud–Aerosol Lidar and Pathfinder Satellite Observations (CALIPSO) spacecraft has provided over 8 yr of nearly continuous vertical profiling of Earth's atmosphere. In this paper we investigate the V3.01 and V3.02 CALIOP 532 nm aerosol layer optical depth (AOD) product (i.e the AOD of individual layers) and the column AOD product (i.e., the sum AOD of the complete column) using an extensive database of coincident measurements. The CALIOP AOD measurements and AOD uncertainty estimates are compared with collocated AOD measurements collected with the NASA High Spectral Resolution Lidar (HSRL) in the North American and Caribbean regions. In addition, the CALIOP aerosol lidar ratios are investigated using the HSRL measurements. In general, compared with the HSRL values, the CALIOP layer AOD are biased high by less than 50% for AOD < 0.3 with higher errors for higher AOD. Less than 60% of the HSRL AOD measurements are encompassed within the CALIOP layer 1 SD uncertainty range (around the CALIOP layer AOD), so an error estimate is created to encompass 68% of the HSRL data. Using this new metric, the CALIOP layer AOD error is estimated using the HSRL layer AOD as ±0.035 ± 0.05 · (HSRL layer AOD) at night and ±0.05 ± 0.05 · (HSRL layer AOD) during the daytime. Furthermore, the CALIOP layer AOD error is found to correlate with aerosol loading as well as aerosol subtype, with the AODs in marine and dust layers agreeing most closely with the HSRL values. The lidar ratios used by CALIOP for polluted dust, polluted continental, and biomass burning layers are larger than the values measured by the HSRL in the CALIOP layers, and therefore the AODs for these types retrieved by CALIOP were generally too large. We estimated the CALIOP column AOD error can be expressed as ±0.05 ± 0.07 · (HSRL column AOD) at night and ±0.08 ± 0.1 · (HSRL column AOD) during the daytime. Multiple sources of error contribute to both positive and negative errors in the CALIOP column AOD, including multiple layers in the column of different aerosol types, lidar ratio errors, cloud misclassification, and undetected aerosol layers. The undetected layers were further investigated and we found that the layer detection algorithm works well at night, although undetected aerosols in the free troposphere introduce a mean underestimate of 0.02 in the column AOD in the data set examined. The decreased signal-to-noise ratio (SNR) during the daytime led to poorer performance of the layer detection. This caused the daytime CALIOP column AOD to be less accurate than during the nighttime, because CALIOP frequently does not detect optically thin aerosol layers with AOD < 0.1. Given that the median vertical extent of aerosol detected within any column was 1.6 km during the nighttime and 1.5 km during the daytime, we can estimate the minimum extinction detection threshold to be 0.012 km−1 at night and 0.067 km−1 during the daytime in a layer median sense. This extensive validation of level 2 CALIOP AOD products extends previous validation studies to nighttime lighting conditions and provides independent measurements of the lidar ratio; thus, allowing the assessment of the effect on the CALIOP AOD of using inappropriate lidar ratio values in the extinction retrieval.


2014 ◽  
Vol 7 (6) ◽  
pp. 6141-6204 ◽  
Author(s):  
R. R. Rogers ◽  
M. A. Vaughan ◽  
C. A. Hostetler ◽  
S. P. Burton ◽  
R. A. Ferrare ◽  
...  

Abstract. The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument onboard the Cloud Aerosol Lidar and Pathfinder Satellite Observations (CALIPSO) spacecraft has provided over 8 years of nearly continuous vertical profiling of Earth's atmosphere. In this paper we investigate the CALIOP 532 nm aerosol layer optical depth (AOD) product, the AOD of individual layers, and the column AOD product, the sum AOD of the complete column, using an extensive database of coincident measurements. The CALIOP AOD measurements and AOD uncertainty estimates are compared with collocated AOD measurements collected with the NASA High Spectral Resolution Lidar (HSRL) in the North American and Caribbean regions. In addition, the CALIOP aerosol lidar ratios are investigated using the HSRL measurements. In general, compared with the HSRL values, the CALIOP layer AOD are biased high by less than 50% for AOD < 0.3 with higher errors for higher AOD. Less than 60% of the HSRL AOD measurements are encompassed within the CALIOP layer one-standard-deviation uncertainty range (around the CALIOP layer AOD), so an error estimate is created to encompass 68% of the HSRL data. Using this new metric, the CALIOP layer AOD error is estimated using the HSRL layer AOD as ± 0.035 ± 0.05 · (HSRL layer AOD) at night and ±0.05 ± 0.05 · (HSRL layer AOD) during the daytime. Furthermore, the CALIOP layer AOD error is found to correlate with aerosol loading as well as aerosol subtype, with the AODs in marine and dust layers agreeing most closely with the HSRL values. The lidar ratios used by CALIOP for polluted dust, polluted continental, and biomass burning layers are larger than the values measured by the HSRL in the CALIOP layers, and, therefore, the AODs for these types retrieved by CALIOP were generally too large. We estimated the CALIOP column AOD error can be expressed as ± 0.05 ± 0.07 · (HSRL column AOD) at night and ± 0.08 ± 0.1 · (HSRL column AOD) during the daytime. Multiple sources of error contribute to both positive and negative errors in the CALIOP column AOD, including multiple layers in the column of different aerosol types, lidar ratio errors, cloud misclassification, and undetected aerosol layers. The undetected layers were further investigated and we found that the layer detection algorithm works well at night, although undetected aerosols in the free troposphere introduce a mean underestimate of 0.02 in the column AOD in the dataset examined. The decreased SNR during the daytime led to poorer performance of the layer detection. This caused the daytime CALIOP column AOD to be less accurate than during the nighttime because CALIOP frequently does not detect optically thin aerosol layers with AOD < 0.1. Given that the median vertical extent of aerosol detected within any column was 1.6 km during the nighttime and 1.5 km during the daytime we can estimate the minimum extinction detection threshold to be 0.012 km−1 at night and 0.067 km−1 during the daytime in a layer median sense. This extensive validation of level 2 CALIOP aerosol layer optical depth products extends previous validation studies to nighttime lighting conditions and provides independent measurements of the lidar ratio, thus allowing the assessment of the effect on the CALIOP AOD of using inappropriate lidar ratio values in the extinction retrieval.


2016 ◽  
Author(s):  
Yann Blanchard ◽  
Alain Royer ◽  
Norman T. O'Neill ◽  
David D. Turner ◽  
Edwin W. Eloranta

Abstract. Multi-band thermal measurements of zenith sky radiance, along with height profile information, were used in a retrieval algorithm, to estimate cloud optical depth and effective particle diameter of thin ice clouds in the Canadian high-Arctic. Ground-based thermal infrared (IR) radiances for 150 semi-transparent ice clouds cases were acquired at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut, Canada (80° N, 86° W). We analyzed and quantified the sensitivity of thermal radiance to several cloud parameters including optical depth, effective particle diameter and shape, water vapor content, thickness and bottom altitude. A look up table retrieval method was used to successfully extract, through an optimal estimation method, cloud optical depth up to values of 2.6 and to separate thin ice clouds into two classes: 1) TIC1 clouds characterized by small crystals (effective particle diameter ≤ 30 μm), and 2) TIC2 clouds characterized by large ice crystals (effective particle diameter > 30 μm). The retrieval technique was validated using data from the Arctic High Spectral Resolution Lidar (AHSRL) and Millimeter Wave Cloud Radar (MMCR). Inversions were performed across three polar winters and results showed a significant correlation (R2 = 0.95) for cloud optical depth retrievals and an overall accuracy of 83 % for the classification of TIC1 and TIC2 clouds. A partial validation relative to an algorithm based on infrared radiance measurements at high spectral resolution between 8 and 21 μm was also carried out. It confirms the robustness of the optical depth retrieval and the fact that the radiometer retrieval was sensitive to small particle (TIC1) sizes.


2017 ◽  
Vol 10 (6) ◽  
pp. 2129-2147 ◽  
Author(s):  
Yann Blanchard ◽  
Alain Royer ◽  
Norman T. O'Neill ◽  
David D. Turner ◽  
Edwin W. Eloranta

Abstract. Multiband downwelling thermal measurements of zenith sky radiance, along with cloud boundary heights, were used in a retrieval algorithm to estimate cloud optical depth and effective particle diameter of thin ice clouds in the Canadian High Arctic. Ground-based thermal infrared (IR) radiances for 150 semitransparent ice clouds cases were acquired at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut, Canada (80° N, 86° W). We analyzed and quantified the sensitivity of downwelling thermal radiance to several cloud parameters including optical depth, effective particle diameter and shape, water vapor content, cloud geometric thickness and cloud base altitude. A lookup table retrieval method was used to successfully extract, through an optimal estimation method, cloud optical depth up to a maximum value of 2.6 and to separate thin ice clouds into two classes: (1) TIC1 clouds characterized by small crystals (effective particle diameter  ≤  30 µm), and (2) TIC2 clouds characterized by large ice crystals (effective particle diameter  >  30 µm). The retrieval technique was validated using data from the Arctic High Spectral Resolution Lidar (AHSRL) and Millimeter Wave Cloud Radar (MMCR). Inversions were performed over three polar winters and results showed a significant correlation (R2 =  0.95) for cloud optical depth retrievals and an overall accuracy of 83 % for the classification of TIC1 and TIC2 clouds. A partial validation relative to an algorithm based on high spectral resolution downwelling IR radiance measurements between 8 and 21 µm was also performed. It confirms the robustness of the optical depth retrieval and the fact that the broadband thermal radiometer retrieval was sensitive to small particle (TIC1) sizes.


2009 ◽  
Vol 9 (2) ◽  
pp. 8817-8856 ◽  
Author(s):  
R. R. Rogers ◽  
J. W. Hair ◽  
C. A. Hostetler ◽  
R. A. Ferrare ◽  
M. D. Obland ◽  
...  

Abstract. The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL) measures vertical profiles of aerosol extinction, backscatter, and depolarization at both 532 nm and 1064 nm. In March of 2006 the HSRL participated in the Megacity Initiative: Local and Global Research Observations (MILAGRO) campaign along with several other suites of instruments deployed on both aircraft and ground based platforms. This paper presents high spatial and vertical resolution HSRL measurements of aerosol extinction and optical depth from MILAGRO and comparisons of those measurements with similar measurements from other sensors and model predictions. HSRL measurements coincident with airborne in situ aerosol scattering and absorption measurements from two different instrument suites on the C-130 and G-1 aircraft, airborne aerosol optical depth (AOD) and extinction measurements from an airborne tracking sunphotometer on the J-31 aircraft, and AOD from a network of ground based Aerosol Robotic Network (AERONET) sun photometers are presented as a validation of the HSRL aerosol extinction and optical depth products. Regarding the extinction validation, we find bias differences between HSRL and these instruments to be less than 3% (0.01 km−1) at 532 nm, the wavelength at which the HSRL technique is employed. The rms differences at 532 nm were less than 50% (0.015 km−1). To our knowledge this is the most comprehensive validation of the HSRL measurement of aerosol extinction and optical depth to date. The observed bias differences in ambient aerosol extinction between HSRL and other measurements is within 15–20% at visible wavelengths, found by previous studies to be the differences observed with current state-of-the-art instrumentation (Schmid et al., 2006).


2009 ◽  
Vol 9 (14) ◽  
pp. 4811-4826 ◽  
Author(s):  
R. R. Rogers ◽  
J. W. Hair ◽  
C. A. Hostetler ◽  
R. A. Ferrare ◽  
M. D. Obland ◽  
...  

Abstract. The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL) measures vertical profiles of aerosol extinction, backscatter, and depolarization at both 532 nm and 1064 nm. In March of 2006 the HSRL participated in the Megacity Initiative: Local and Global Research Observations (MILAGRO) campaign along with several other suites of instruments deployed on both aircraft and ground based platforms. This paper presents high spatial and vertical resolution HSRL measurements of aerosol extinction and optical depth from MILAGRO and comparisons of those measurements with similar measurements from other sensors and model predictions. HSRL measurements coincident with airborne in situ aerosol scattering and absorption measurements from two different instrument suites on the C-130 and G-1 aircraft, airborne aerosol optical depth (AOD) and extinction measurements from an airborne tracking sunphotometer on the J-31 aircraft, and AOD from a network of ground based Aerosol Robotic Network (AERONET) sun photometers are presented as a validation of the HSRL aerosol extinction and optical depth products. Regarding the extinction validation, we find bias differences between HSRL and these instruments to be less than 3% (0.01 km−1) at 532 nm, the wavelength at which the HSRL technique is employed. The rms differences at 532 nm were less than 50% (0.015 km−1). To our knowledge this is the most comprehensive validation of the HSRL measurement of aerosol extinction and optical depth to date. The observed bias differences in ambient aerosol extinction between HSRL and other measurements is within 15–20% at visible wavelengths, found by previous studies to be the differences observed with current state-of-the-art instrumentation (Schmid et al., 2006).


2006 ◽  
Vol 23 (5) ◽  
pp. 653-670 ◽  
Author(s):  
Robert E. Holz ◽  
Steve Ackerman ◽  
Paolo Antonelli ◽  
Fred Nagle ◽  
Robert O. Knuteson ◽  
...  

Abstract An improvement to high-spectral-resolution infrared cloud-top altitude retrievals is compared to existing retrieval methods and cloud lidar measurements. The new method, CO2 sorting, determines optimal channel pairs to which the CO2 slicing retrieval will be applied. The new retrieval is applied to aircraft Scanning High-Resolution Interferometer Sounder (S-HIS) measurements. The results are compared to existing passive retrieval methods and coincident Cloud Physics Lidar (CPL) measurements. It is demonstrated that when CO2 sorting is used to select channel pairs for CO2 slicing there is an improvement in the retrieved cloud heights when compared to the CPL for the optically thin clouds (total optical depths less than 1.0). For geometrically thick but tenuous clouds, the infrared retrieved cloud tops underestimated the cloud height, when compared to those of the CPL, by greater than 2.5 km. For these cases the cloud heights retrieved by the S-HIS correlated closely with the level at which the CPL-integrated cloud optical depth was approximately 1.0.


Sign in / Sign up

Export Citation Format

Share Document