Cooling a nanomechanical membrane resonator from room temperature close to the quantum ground state

2021 ◽  
Author(s):  
Nenad Kralj ◽  
Sampo A. Saarinen ◽  
Eric Langman ◽  
Yeghishe Tsaturyan ◽  
Albert Schliesser
2015 ◽  
Vol 91 (1) ◽  
Author(s):  
Yong-Chun Liu ◽  
Rui-Shan Liu ◽  
Chun-Hua Dong ◽  
Yan Li ◽  
Qihuang Gong ◽  
...  

2019 ◽  
Author(s):  
Kazunori Miyamoto ◽  
Shodai Narita ◽  
Yui Masumoto ◽  
Takahiro Hashishin ◽  
Mutsumi Kimura ◽  
...  

Diatomic carbon (C<sub>2</sub>) is historically an elusive chemical species. It has long been believed that the generation of C<sub>2 </sub>requires extremely high “physical” energy, such as an electric carbon arc or multiple photon excitation, and so it has been the general consensus that the inherent nature of C<sub>2 </sub><i>in the ground state </i>is experimentally inaccessible. Here, we present the first “chemical” synthesis of C<sub>2 </sub>in a flask at <i>room temperature or below</i>, providing the first experimental evidence to support theoretical predictions that (1) C<sub>2 </sub>has a singlet biradical character with a quadruple bond, thus settling a long-standing controversy between experimental and theoretical chemists, and that (2) C<sub>2 </sub>serves as a molecular element in the formation of sp<sup>2</sup>-carbon allotropes such as graphite, carbon nanotubes and C<sub>60</sub>.


Nature ◽  
2010 ◽  
Vol 464 (7289) ◽  
pp. 697-703 ◽  
Author(s):  
A. D. O’Connell ◽  
M. Hofheinz ◽  
M. Ansmann ◽  
Radoslaw C. Bialczak ◽  
M. Lenander ◽  
...  

2013 ◽  
Vol 103 (24) ◽  
pp. 242601 ◽  
Author(s):  
Amin Eftekharian ◽  
Haig Atikian ◽  
Mohsen K. Akhlaghi ◽  
Amir Jafari Salim ◽  
A. Hamed Majedi

Nature ◽  
2011 ◽  
Vol 475 (7356) ◽  
pp. 359-363 ◽  
Author(s):  
J. D. Teufel ◽  
T. Donner ◽  
Dale Li ◽  
J. W. Harlow ◽  
M. S. Allman ◽  
...  

2019 ◽  
Vol 473 ◽  
pp. 236-240
Author(s):  
E.A. Zvereva ◽  
T.M. Vasilchikova ◽  
M.I. Stratan ◽  
S.A. Ibragimov ◽  
I.S. Glazkova ◽  
...  

Author(s):  
Antoine Heidmann ◽  
Pierre-Francois Cohadon

In its simplest form, optomechanics amounts to two complementary coupling effects: mechanical motion changes the path followed by light, but light (through radiation pressure) can drive the mechanical resonator into motion as well. Optomechanics allows one to control resonator motion by laser cooling down to the quantum ground state, or to control light by using back-action in optical measurements and in quantum optics. Its main applications are optomechanical sensors to detect tiny mechanical motions and weak forces, cold damping and laser cooling, and quantum optics. The objectives of this chapter are to provide a brief account of the history of the field, together with its fundamentals. We will in particular review both classical and quantum aspects of optomechanics, together with its applications to high-sensitivity measurements and to control or cool mechanical resonators down to their ground state, with possible applications for tests of quantum theory or for quantum information.


Sign in / Sign up

Export Citation Format

Share Document