heating rate
Recently Published Documents


TOTAL DOCUMENTS

2479
(FIVE YEARS 494)

H-INDEX

68
(FIVE YEARS 10)

2022 ◽  
Vol 543 ◽  
pp. 168623
Author(s):  
Yuluo Li ◽  
Ningning Shen ◽  
Yidong Wu ◽  
Suo zhang ◽  
Zhanbing He ◽  
...  

Author(s):  
Wei Zhang ◽  
Zhiwei Ma ◽  
Haowei Zhang ◽  
Xin Wang

Abstract The sawtooth-like oscillations resulting from the m/n=2/1 double tearing mode (DTM) are numerically investigated through the three-dimensional, toroidal, nonlinear resistive-MHD code (CLT). We find that the nonlinear evolution of the m/n=2/1 DTM can lead to sawtooth-like oscillations, which are similar to those driven by the kink mode. The perpendicular thermal conductivity and the external heating rate can significantly alter the behaviors of the DTM driven sawtooth-like oscillations. With a high perpendicular thermal conductivity, the system quickly evolves into a steady state with m/n=2/1 magnetic islands and helical flow. However, with a low perpendicular thermal conductivity, the system tends to exhibit sawtooth-like oscillations. With a sufficiently high or low heating rate, the system exhibits sawtooth-like oscillations, while with an intermediate heating rate, the system quickly evolves into a steady state. At the steady state, there exist the non-axisymmetric magnetic field and strong radial flow, and both are with helicity of m/n=2/1. Like the steady state with m/n=1/1 radial flow, which is beneficial for preventing the Helium ash accumulation in the core, the steady state with m/n=2/1 radial flow might also be a good candidate for the advanced steady-state operations in future fusion reactors. We also find that the behaviors of the sawtooth-like oscillations are almost independent of Tokamak geometry, which implies that the steady state with saturated m/n=2/1 islands might exist in different Tokamaks.


2022 ◽  
Vol 15 (1) ◽  
pp. 61-77
Author(s):  
Sabrina P. Cochrane ◽  
K. Sebastian Schmidt ◽  
Hong Chen ◽  
Peter Pilewskie ◽  
Scott Kittelman ◽  
...  

Abstract. Aerosol heating due to shortwave absorption has implications for local atmospheric stability and regional dynamics. The derivation of heating rate profiles from space-based observations is challenging because it requires the vertical profile of relevant properties such as the aerosol extinction coefficient and single-scattering albedo (SSA). In the southeastern Atlantic, this challenge is amplified by the presence of stratocumulus clouds below the biomass burning plume advected from Africa, since the cloud properties affect the magnitude of the aerosol heating aloft, which may in turn lead to changes in the cloud properties and life cycle. The combination of spaceborne lidar data with passive imagers shows promise for future derivations of heating rate profiles and curtains, but new algorithms require careful testing with data from aircraft experiments where measurements of radiation, aerosol, and cloud parameters are better colocated and readily available. In this study, we derive heating rate profiles and vertical cross sections (curtains) from aircraft measurements during the NASA ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) project in the southeastern Atlantic. Spectrally resolved irradiance measurements and the derived column absorption allow for the separation of total heating rates into aerosol and gas (primarily water vapor) absorption. The nine cases we analyzed capture some of the co-variability of heating rate profiles and their primary drivers, leading to the development of a new concept: the heating rate efficiency (HRE; the heating rate per unit aerosol extinction). HRE, which accounts for the overall aerosol loading as well as vertical distribution of the aerosol layer, varies little with altitude as opposed to the standard heating rate. The large case-to-case variability for ORACLES is significantly reduced after converting from heating rate to HRE, allowing us to quantify its dependence on SSA, cloud albedo, and solar zenith angle.


2022 ◽  
pp. 179146
Author(s):  
Cristina Silvia Stoicescu ◽  
Dana Culita ◽  
Nicolae Stanica ◽  
Florica Papa ◽  
Razvan Nicolae State ◽  
...  

2021 ◽  
Vol 104 (4) ◽  
pp. 39-46
Author(s):  
V.N. Fomin ◽  
◽  
A.A. Aynabaev ◽  
D.A. Kaykenov ◽  
D.T. Sadyrbekov ◽  
...  

The development of physicochemical methods for the analysis of objects of complex composition requires the application of methods of mathematical experiment design. This article investigates the possibility of using probabilistic-deterministic design of experiment (PDDoE) for obtaining a mathematical model of the chromatographic separation process of coal tar hydrogenation products on an Agilent 7890A device with an Rxi-5ms column. It is shown that the relationship between the column heating rate and the carrier gas pressure with the values averaged for the entire chromatogram can be established with a high accuracy. It is noted that the accuracy of modeling the individual characteristics of the mixture components’ peaks is less, but remains sufficient for many practical needs. Nonlinear multiple correlation coefficients (NMC) for the dependence of the average retention time and average intensity on the considered factors are more than 0.99; they are more than 0.98 for the average peak width. NMC for the dependence of the resolution with the relation to the peaks of naphthalene and 2-ethylphenol is more than 0.8 at a significant level that sufficient for practice. The quality of the mathematical model was checked by triple registration of the chromatogram at the values of the column heating rate and carrier gas pressure that were not used in the training experiment. The measurement results are excellent squared with those calculated using the obtained generalized equations. The PDDoE method can be recommended as a method for mathematical design of an optimization experiment in gas chromatography.


2021 ◽  
Vol 10 (2) ◽  
Author(s):  
Kemas Ridhuan ◽  
Tri Cahyo Wahyudi ◽  
Danang Sulistiyo ◽  
Bahtera Anggara

Distillation of liquid smoke is a process of heating liquid smoke based on the difference in its boiling point and then cooled to get liquid smoke with better quality. This heating aims to separate unwanted components in liquid smoke such as tar and benzopyrene. The process is strongly influenced by several things such as temperature and distillator. From these two measurements, several characteristics such as heating rate, distillation flow rate of liquid smoke, production capacity, heating temperature, steam temperature and distillation time, as well as the characteristics of the resulting liquid smoke can be known.The purpose of this study is to determine the characteristics of the 3rd grade liquid smoke distillation process with electric heating and water cooling condenser which includes the production capacity of liquid smoke and to determine the quality and quantity of liquid smoke, heating rate, electricity consumption, flow rate and to determine the efficiency of 2nd grade liquid smoke production.This research was conducted at the Laboratorium Teknik Mesin Universitas Muhammadiyah Metro, this study used a distillation apparatus made of Aluminium plate 1 mm thick, 180 mm in diameter, 250 mm high. Condenser with 0.5 inch diameter copper pipe 3,5 m long, 3 inch diameter PVC pipe, 3m long. The raw material for 3rd grade liquid smoke is 3 liters.The results obtained that the distillation apparatus has a capacity of 3 liters, the distillation temperature affects the rate of heating that occurs, namely the distillation temperature of 110oC, the heating rate is 707,42 J/second, the electricity consumption is 4,48kWh, the time is 45 minutes, and for a temperature of 120 oC the heating rate is 754,60 J/second, electricity consumption is 4,467 kWh in 65 minutes. The highest yield of liquid smoke is at a temperature of 110 oC, which is 2840 ml with a flow rate of 8,35 ml/minute and an efficiency of 94,6%, pH level of 2,15. And for a temperature of 120 oC it produces 2560 ml of liquid smoke, with a flow rate of 8,67 ml/minute and an efficiency of 85,3%, with a pH level of 2,10.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 137
Author(s):  
Ariany Zulkania ◽  
Rochmadi Rochmadi ◽  
Muslikhin Hidayat ◽  
Rochim Bakti Cahyono

Currently, fossil fuels are still the primary fuel source and reducing agent in the steel industries. The utilization of fossil fuels is strongly associated with CO2 emissions. Therefore, an alternative solution for green steel production is highly recommended, with the use of biomass as a source of fuel and a reducing agent. Biomass’s growth consumes carbon dioxide from the atmosphere, which may be stored for variable amounts of time (carbon dioxide removal, or CDR). The pellets used in this study were prepared from a mixture of low-grade iron ore and palm kernel shells (PKS). The reducing reactivity of the pellets was investigated by combining thermogravimetric analysis (TGA) and laboratory experiments. In the TGA, the heating changes stably from room temperature to 950 °C with 5–15 °C/min heating rate. The laboratory experiments’ temperature and heating rate variations were 600–900 °C and 10–20 °C/min, respectively. Additionally, the reduction mechanism was observed based on the X-ray diffraction analysis of the pellets and the composition of the reduced gas. The study results show that increasing the heating rate will enhance the reduction reactivity comprehensively and shorten the reduction time. The phase change of Fe2O3 → Fe3O4 → FeO → Fe increases sharply starting at 800 °C. The XRD intensities of Fe compounds at a heating rate of 20 °C/min are higher than at 10 °C/min. Analysis of the reduced gas exhibits that carbon gasification begins to enlarge at a temperature of 800 °C, thereby increasing the rate of iron ore reduction. The combination of several analyses carried out shows that the reduction reaction of the mixture iron ore-PKS pellets runs optimally at a heating rate of 20 °C/min. In this heating rate, the reduced gas contains much higher CO than at the heating rate of 10 °C/min at temperatures above 800 °C, which encourages a more significant reduction rate. In addition, the same reduction degree can be achieved in a shorter time and at a lower temperature for a heating rate of 20 °C/min compared to 10 °C/min.


Catalysts ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 17
Author(s):  
Kusdianto Kusdianto ◽  
Meditha Hudandini ◽  
Dianping Jiang ◽  
Masaru Kubo ◽  
Manabu Shimada

Ag–TiO2 nanocomposite films, based of Ag and TiO2 nanoparticles, were fabricated in a one-step aerosol route employing the simultaneous plasma-enhanced chemical vapor deposition and physical vapor deposition systems. The as-fabricated films were subjected to different heating rates (3 to 60 °C/min) with a constant annealing temperature of 600 °C to observe the significant changes in the properties (e.g., nanoparticle size, crystalline size, crystallite phase, surface area) toward the photocatalytic performance. The photocatalytic activity was evaluated by the measurement of the degradation of a methylene blue aqueous solution under UV light irradiation, and the results revealed that it gradually increased with the increase in the heating rate, caused by the increased Brunauer–Emmett–Teller (BET) specific surface area and total pore volume.


Sign in / Sign up

Export Citation Format

Share Document