Excited State Structural Dynamics Probed with Time-Resolved Sulfur K-edge X-ray Absorption Spectroscopy

Author(s):  
Matthew R. Ross ◽  
Benjamin E Van Kuiken ◽  
Matthew L. Strader ◽  
Hana Cho ◽  
Amy Cordones-Hahn ◽  
...  
Author(s):  
Matthew Ross ◽  
Benjamin E. Van Kuiken ◽  
Mathew L. Strader ◽  
Amy Cordones-Hahn ◽  
Hana Cho ◽  
...  

Author(s):  
Majed Chergui

The need to visualize molecular structure in the course of a chemical reaction, a phase transformation or a biological function has been a dream of scientists for decades. The development of time-resolved X-ray and electron-based methods is making this true. X-ray absorption spectroscopy is ideal for the study of structural dynamics in liquids, because it can be implemented in amorphous media. Furthermore, it is chemically selective. Using X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) in laser pump/X-ray probe experiments allows the retrieval of the local geometric structure of the system under study, but also the underlying photoinduced electronic structure changes that drive the structural dynamics. Recent developments in picosecond and femtosecond X-ray absorption spectroscopy applied to molecular systems in solution are reviewed: examples on ultrafast photoinduced processes such as intramolecular electron transfer, low-to-high spin change, and bond formation are presented.


2002 ◽  
Vol 116 (7) ◽  
pp. 2955-2966 ◽  
Author(s):  
Christian Bressler ◽  
Melanie Saes ◽  
Majed Chergui ◽  
Daniel Grolimund ◽  
Rafael Abela ◽  
...  

2009 ◽  
Vol 80 (12) ◽  
Author(s):  
P. W. Hillyard ◽  
S. V. N. T. Kuchibhatla ◽  
T. E. Glover ◽  
M. P. Hertlein ◽  
N. Huse ◽  
...  

2016 ◽  
Vol 145 (14) ◽  
pp. 144307 ◽  
Author(s):  
Simon P. Neville ◽  
Vitali Averbukh ◽  
Marco Ruberti ◽  
Renjie Yun ◽  
Serguei Patchkovskii ◽  
...  

2016 ◽  
Vol 194 ◽  
pp. 117-145 ◽  
Author(s):  
Simon P. Neville ◽  
Vitali Averbukh ◽  
Serguei Patchkovskii ◽  
Marco Ruberti ◽  
Renjie Yun ◽  
...  

The excited state non-adiabatic dynamics of polyatomic molecules, leading to the coupling of structural and electronic dynamics, is a fundamentally important yet challenging problem for both experiment and theory. Ongoing developments in ultrafast extreme vacuum ultraviolet (XUV) and soft X-ray sources present new probes of coupled electronic-structural dynamics because of their novel and desirable characteristics. As one example, inner-shell spectroscopy offers localized, atom-specific probes of evolving electronic structure and bonding (via chemical shifts). In this work, we present the first on-the-fly ultrafast X-ray time-resolved absorption spectrum simulations of excited state wavepacket dynamics: photo-excited ethylene. This was achieved by coupling the ab initio multiple spawning (AIMS) method, employing on-the-fly dynamics simulations, with high-level algebraic diagrammatic construction (ADC) X-ray absorption cross-section calculations. Using the excited state dynamics of ethylene as a test case, we assessed the ability of X-ray absorption spectroscopy to project out the electronic character of complex wavepacket dynamics, and evaluated the sensitivity of the calculated spectra to large amplitude nuclear motion. In particular, we demonstrate the pronounced sensitivity of the pre-edge region of the X-ray absorption spectrum to the electronic and structural evolution of the excited-state wavepacket. We conclude that ultrafast time-resolved X-ray absorption spectroscopy may become a powerful tool in the interrogation of excited state non-adiabatic molecular dynamics.


2008 ◽  
Vol 16 (1) ◽  
pp. 110-115 ◽  
Author(s):  
Tokushi Sato ◽  
Shunsuke Nozawa ◽  
Kohei Ichiyanagi ◽  
Ayana Tomita ◽  
Matthieu Chollet ◽  
...  

2019 ◽  
Vol 123 (28) ◽  
pp. 6042-6048 ◽  
Author(s):  
Lindsay B. Michocki ◽  
Nicholas A. Miller ◽  
Roberto Alonso-Mori ◽  
Alexander Britz ◽  
Aniruddha Deb ◽  
...  

2021 ◽  
Vol 22 (24) ◽  
pp. 13463
Author(s):  
Holger Stiel ◽  
Julia Braenzel ◽  
Adrian Jonas ◽  
Richard Gnewkow ◽  
Lisa Theresa Glöggler ◽  
...  

The extension of the pump-probe approach known from UV/VIS spectroscopy to very short wavelengths together with advanced simulation techniques allows a detailed analysis of excited-state dynamics in organic molecules or biomolecular structures on a nanosecond to femtosecond time level. Optical pump soft X-ray probe spectroscopy is a relatively new approach to detect and characterize optically dark states in organic molecules, exciton dynamics or transient ligand-to-metal charge transfer states. In this paper, we describe two experimental setups for transient soft X-ray absorption spectroscopy based on an LPP emitting picosecond and sub-nanosecond soft X-ray pulses in the photon energy range between 50 and 1500 eV. We apply these setups for near-edge X-ray absorption fine structure (NEXAFS) investigations of thin films of a metal-free porphyrin, an aggregate forming carbocyanine and a nickel oxide molecule. NEXAFS investigations have been carried out at the carbon, nitrogen and oxygen K-edge as well as on the Ni L-edge. From time-resolved NEXAFS carbon, K-edge measurements of the metal-free porphyrin first insights into a long-lived trap state are gained. Our findings are discussed and compared with density functional theory calculations.


2018 ◽  
Vol 24 (24) ◽  
pp. 6464-6472 ◽  
Author(s):  
Dooshaye Moonshiram ◽  
Pablo Garrido-Barros ◽  
Carolina Gimbert-Suriñach ◽  
Antonio Picón ◽  
Cunming Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document