Sugar Interaction with Metals in Aqueous Solution: Indirect Determination from Infrared and Direct Determination from Nuclear Magnetic Resonance Spectroscopy

2003 ◽  
Vol 57 (4) ◽  
pp. 466-472 ◽  
Author(s):  
Philippe Rondeau ◽  
Sandrine Sers ◽  
Dhanjay Jhurry ◽  
Frederic Cadet

In this article, mid-infrared Fourier transform (Mid-FT-IR) and carbon thirteen nuclear magnetic resonance (13C NMR) spectroscopy have been used to determine possible interactions between sucrose and various alkali or alkaline earth metals in aqueous solution. In the presence of these metals, significant shifts in the absorption bands of sucrose were noted by mid-FT-IR coupled with principal component analysis (PCA). These shifts were explained on the basis of weakening of the H-bond network between sucrose and water and possible interactions between sucrose and the metal ion. Factorial maps were established and the spectral patterns obtained show that these interactions vary according to the nature of the metal ion. 13C NMR analysis showed that the carbon atoms of sucrose undergo shielding or deshielding in the presence of metal ions in aqueous solutions. Two factors were invoked to account for the variation of chemical shifts: the rupture of hydrogen bonds due to hydration of the metal ion and the possible coordination of the metal ion to the oxygen atoms of sucrose.

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Chuanjiang Li ◽  
Hui Wang ◽  
Manuel Juárez ◽  
Eric Dongliang Ruan

Maillard reaction is a nonenzymatic reaction between reducing sugars and free amino acid moieties, which is known as one of the most important modifications in food science. It is essential to characterize the structure of Amadori rearrangement products (ARPs) formed in the early stage of Maillard reaction. In the present study, the Nα-acetyl-lysine-glucose model had been successfully set up to produce ARP, Nα-acetyl-lysine-glucose. After HPLC purification, ARP had been identified by ESI-MS with intense [M+H]+ ion at 351 m/z and the purity of ARP was confirmed to be over 90% by the relative intensity of [M+H]+ ion. Further structural characterization of the ARP was accomplished by using nuclear magnetic resonance (NMR) spectroscopy, including 1D 1H NMR and 13C NMR, the distortionless enhancement by polarization transfer (DEPT-135) and 2D 1H-1H and 13C-1H correlation spectroscopy (COSY) and 2D nuclear overhauser enhancement spectroscopy (NOESY). The complexity of 1D 1H NMR and 13C NMR was observed due to the presence of isomers in glucose moiety of ARP. However, DEPT-135 and 2D NMR techniques provided more structural information to assign the 1H and 13C resonances of ARP. 2D NOESY had successfully confirmed the glycosylated site between 10-N in Nα-acetyl-lysine and 7′-C in glucose.


1998 ◽  
Vol 274 (1) ◽  
pp. E65-E71 ◽  
Author(s):  
Ekkehard Küstermann ◽  
Joachim Seelig ◽  
Basil Künnecke

The first in vivo detection of a vitamin with nuclear magnetic resonance (NMR) is reported for mammalian liver. Vitamin C, also known as ascorbic acid, was monitored noninvasively in rat liver by “whole body”13C NMR spectroscopy at high field after infusion of [1,2-13C2]glucose into anesthetized rats. Generally, the carbon resonances of ascorbic acid overlap with those of other highly abundant cellular metabolites, thus precluding their observation in situ. This problem was resolved by taking advantage of the13C-13C spin couplings introduced by the two covalently bound13C nuclei in [1,2-13C2]glucose. During glucose metabolism, [5,6-13C2]ascorbic acid was synthesized, which also exhibited characteristic13C homonuclear spin couplings. This feature enabled the spectral discrimination of ascorbic acid from overlapping singlet resonances of other metabolites. Quantitative analysis of the spin-coupling patterns provided an estimate of the turnover rate of hepatic ascorbic acid in vivo (1.9 ± 0.4 nmol ⋅ min−1 ⋅ g−1) and a novel approach toward a better understanding of optimal ascorbic acid requirements in humans. The results obtained in vivo were confirmed with high-resolution proton and13C NMR spectroscopy of liver extracts.


Sign in / Sign up

Export Citation Format

Share Document