maillard reaction
Recently Published Documents


TOTAL DOCUMENTS

2277
(FIVE YEARS 461)

H-INDEX

91
(FIVE YEARS 13)

Food systems ◽  
2022 ◽  
Vol 4 (4) ◽  
pp. 278-285
Author(s):  
I. V. Kobelkova ◽  
M. M. Korosteleva ◽  
D. B. Nikityuk ◽  
M. S. Kobelkova

Food allergy, which affects about 8% of children and 5% of adults in the world, is one of the major global health problems, and allergen control is an important aspect of food safety. According to the FALCPA (Food Allergen Labeling and Consumer Protection Act of 2004 FDA), more than 160 foods can cause allergic reactions, with eight of them responsible for 90% of all food allergies in the United States, including milk, eggs, wheat, peanuts, soybeans, tree nuts, crustaceans and fish, also known as the Big 8. Most foods that are sources of obligate allergens are heat treated before consumption, which can trigger the Maillard reaction, which produces glycation end products. Symptoms of food sensitization are known to significantly affect the quality of life, gut microbial diversity and adaptation potential. In particular, in athletes, this can be expressed in a decrease in the effectiveness of the training process, which leads to poor endurance and athletic performance. In this regard, it seems relevant to study the effect of the Maillard reaction and AGEs on the immunogenicity of proteins and the possible relationship between these compounds and food allergy, as well as to develop measures to prevent the adverse effect of allergens on the body of a professional athlete and any other consumer.


2022 ◽  
pp. 132119
Author(s):  
Yongkang Ye ◽  
Shuangshuang Ye ◽  
Zhangxiang Wanyan ◽  
Hao Ping ◽  
Zixun Xu ◽  
...  

Author(s):  
Mahesha M. Poojary ◽  
Marianne N. Lund

Protein is a major nutrient present in foods along with carbohydrates and lipids. Food proteins undergo a wide range of modifications during food production, processing, and storage. In this review, we discuss two major reactions, oxidation and the Maillard reaction, involved in chemical modifications of food proteins. Protein oxidation in foods is initiated by metal-, enzyme-, or light-induced processes. Food protein oxidation results in the loss of thiol groups and the formation of protein carbonyls and specific oxidation products of cysteine, tyrosine, tryptophan, phenylalanine, and methionine residues, such as disulfides, dityrosine, kynurenine, m-tyrosine, and methionine sulfoxide. The Maillard reaction involves the reaction of nucleophilic amino acid residues with reducing sugars, which yields numerous heterogeneous compounds such as α-dicarbonyls, furans, Strecker aldehydes, advanced glycation end-products, and melanoidins. Both protein oxidation and the Maillard reaction result in the loss of essential amino acids but may positively or negatively impact food structure and flavor. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Michael Hellwig ◽  
Julia Nitschke ◽  
Thomas Henle

AbstractThe Maillard reaction is traditionally subdivided into three stages that start consecutively and run in parallel. Here, we show that N-ε-carboxymethyllysine (CML), a compound formed in the late stage of the reaction, can undergo a second glycation event at its secondary amino group leading to a new class of Amadori rearrangement products. When N-α-hippuryl-CML was incubated in the presence of reducing sugars such as glucose, galactose, ribose, xylose, maltose, or lactose in solution for 1 h at 75 °C, the compound was degraded by 6–21%, and N-ε-carboxymethyl-N-ε-deoxyketosyl lysine derivatives were formed. Under the same conditions, lysine was 5–10 times more reactive than CML. N-α-hippuryl-N-ε-carboxymethyl-N-ε-(1-deoxyfructosyl)-l-lysine (hippuryl-CMFL) and N-ε-carboxymethyl-N-ε-(1-deoxyfructosyl)-l-lysine (CMFL) were synthesized, isolated and characterized by MS/MS and NMR experiments. Depending on the reaction conditions, up to 21% of CMFL can be converted to the furosine analogue N-ε-carboxymethyl-N-ε-furoylmethyl-l-lysine (CM-Fur) during standard acid protein hydrolysis with hydrochloric acid. Incubation of bovine serum albumin (BSA) with glucose for up to 9 weeks at 37 °C revealed the formation of CMFL in the protein as assessed by HPLC–MS/MS in the MRM mode. Under these conditions, ca. 13% of lysine residues had been converted to fructosyllysine, and 0.03% had been converted to CMFL. The detection of glycation products of glycated amino acids (heterogeneous multiple glycation) reveals a novel pathway in the Maillard reaction.


Author(s):  
Satoshi Kukuminato ◽  
Kento Koyama ◽  
Shigenobu Koseki

Although the antimicrobial effect of melanoidins has been reported in some foods, there have been few comprehensive investigations on the antimicrobial activity of combinations of reaction substrates of the Maillard reaction. The present study comprehensively investigated the potential of various combinations of reducing sugars and amino acids. Because the melanoidins examined in this study were produced simply by heating in an autoclave at 121°C for 60 min, the of the targeted melanoidins can be easily produced.


Sign in / Sign up

Export Citation Format

Share Document