scholarly journals Sparse Coding Can Predict Primary Visual Cortex Receptive Field Changes Induced by Abnormal Visual Input

2013 ◽  
Vol 9 (5) ◽  
pp. e1003005 ◽  
Author(s):  
Jonathan J. Hunt ◽  
Peter Dayan ◽  
Geoffrey J. Goodhill
2019 ◽  
Author(s):  
Federica Capparelli ◽  
Klaus Pawelzik ◽  
Udo Ernst

AbstractA central goal in visual neuroscience is to understand computational mechanisms and to identify neural structures responsible for integrating local visual features into global representations. When probed with complex stimuli that extend beyond their classical receptive field, neurons display non-linear behaviours indicative of such integration processes already in early stages of visual processing. Recently some progress has been made in explaining these effects from first principles by sparse coding models with a neurophysiologically realistic inference dynamics. They reproduce some of the complex response characteristics observed in primary visual cortex, but only when the context is located near the classical receptive field, since the connection scheme they propose include interactions only among neurons with overlapping input fields. Longer-range interactions required for addressing the plethora of contextual effects reaching beyond this range do not exist. Hence, a satisfactory explanation of contextual phenomena in terms of realistic interactions and dynamics in visual cortex is still missing. Here we propose an extended generative model for visual scenes that includes spatial dependencies among different features. We derive a neurophysiologically realistic inference scheme under the constraint that neurons have direct access to only local image information. The scheme can be interpreted as a network in primary visual cortex where two neural populations are organized in different layers within orientation hypercolumns that are connected by local, short-range and long-range recurrent interactions. When trained with natural images, the model predicts a connectivity structure linking neurons with similar orientation preferences matching the typical patterns found for long-ranging horizontal axons and feedback projections in visual cortex. Subjected to contextual stimuli typically used in empirical studies our model replicates several hallmark effects of contextual processing and predicts characteristic differences for surround modulation between the two model populations. In summary, our model provides a novel framework for contextual processing in the visual system proposing a well-defined functional role for horizontal axons and feedback projections.Author summaryAn influential hypothesis about how the brain processes visual information posits that each given stimulus should be efficiently encoded using only a small number of cells. This idea led to the development of a class of models that provided a functional explanation for various response properties of visual neurons, including the non-linear modulations observed when localized stimuli are placed in a broader spatial context. However, it remains to be clarified through which anatomical structures and neural connectivities a network in the cortex could perform the computations that these models require. In this paper we propose a model for encoding spatially extended visual scenes. Imposing the constraint that neurons in visual cortex have direct access only to small portions of the visual field we derive a simple yet realistic neural population dynamics. Connectivities optimized for natural scenes conform with anatomical findings and the resulting model reproduces a broad set of physiological observations, while exposing the neural mechanisms relevant for spatio-temporal information integration.


2000 ◽  
Vol 83 (2) ◽  
pp. 1019-1030 ◽  
Author(s):  
Valentin Dragoi ◽  
Mriganka Sur

A fundamental feature of neural circuitry in the primary visual cortex (V1) is the existence of recurrent excitatory connections between spiny neurons, recurrent inhibitory connections between smooth neurons, and local connections between excitatory and inhibitory neurons. We modeled the dynamic behavior of intermixed excitatory and inhibitory populations of cells in V1 that receive input from the classical receptive field (the receptive field center) through feedforward thalamocortical afferents, as well as input from outside the classical receptive field (the receptive field surround) via long-range intracortical connections. A counterintuitive result is that the response of oriented cells can be facilitated beyond optimal levels when the surround stimulus is cross-oriented with respect to the center and suppressed when the surround stimulus is iso-oriented. This effect is primarily due to changes in recurrent inhibition within a local circuit. Cross-oriented surround stimulation leads to a reduction of presynaptic inhibition and a supraoptimal response, whereas iso-oriented surround stimulation has the opposite effect. This mechanism is used to explain the orientation and contrast dependence of contextual interactions in primary visual cortex: responses to a center stimulus can be both strongly suppressed and supraoptimally facilitated as a function of surround orientation, and these effects diminish as stimulus contrast decreases.


Author(s):  
Qingyong Li ◽  
Zhiping Shi ◽  
Zhongzhi Shi

Sparse coding theory demonstrates that the neurons in the primary visual cortex form a sparse representation of natural scenes in the viewpoint of statistics, but a typical scene contains many different patterns (corresponding to neurons in cortex) competing for neural representation because of the limited processing capacity of the visual system. We propose an attention-guided sparse coding model. This model includes two modules: the non-uniform sampling module simulating the process of retina and a data-driven attention module based on the response saliency. Our experiment results show that the model notably decreases the number of coefficients which may be activated, and retains the main vision information at the same time. It provides a way to improve the coding efficiency for sparse coding model and to achieve good performance in both population sparseness and lifetime sparseness.


1995 ◽  
Vol 74 (2) ◽  
pp. 779-792 ◽  
Author(s):  
A. Das ◽  
C. D. Gilbert

1. Receptive field (RF) sizes of neurons in adult primary visual cortex are dynamic, expanding and contracting in response to alternate stimulation outside and within the RF over periods ranging from seconds to minutes. The substrate for this dynamic expansion was shown to lie in cortex, as opposed to subcortical parts of the visual pathway. The present study was designed to examine changes in cortical connection strengths that could underlie this observed plasticity by measuring the changes in cross-correlation histograms between pairs of primary visual cortex neurons that are induced to dynamically change their RF sizes. 2. Visually driven neural activity was recorded from single units in the superficial layers of primary visual cortex in adult cats, with two independent electrodes separated by 0.1–5 mm at their tips, and cross-correlated on-line. The neurons were then conditioned by stimulation with an “artificial scotoma,” a field of flashing random dots filling the region of visual space around a blank rectangle enclosing the RFs of the recorded neurons. The neuronal RFs were tested for expansion and their visually driven output again cross-correlated. After this, the neurons were stimulated vigorously through their RF centers to induce the field to collapse, and the visually driven output from the collapsed RFs was again cross-correlated. Cross-correlograms obtained before and after conditioning, and after RF collapse, were normalized by their flanks to control for changes in peak size due solely to fluctuations in spike rate. 3. A total of 37 pairs of neurons that showed distinct cross-correlogram peaks, and whose RF borders were clearly discernible both before and after conditioning, were used in the final analysis. Of these neuron pairs, conditioning led to a clear expansion of RF boundaries in 28 pairs, whereas in 9 pairs the RFs did not expand. RFs that did expand showed no significant shifts in their orientation preference, orientation selectivity, or ocularity. 4. When the RFs of a pair of neurons expanded with conditioning, the area of the associated flank-normalized cross-correlogram peaks also increased (by a factor ranging from 0.84 up to 3.5). Correlograms returned to their preconditioning values when RFs collapsed.(ABSTRACT TRUNCATED AT 400 WORDS)


2001 ◽  
Vol 86 (5) ◽  
pp. 2559-2570 ◽  
Author(s):  
Masaharu Kinoshita ◽  
Hidehiko Komatsu

The perceived brightness of a surface is determined not only by the luminance of the surface (local information), but also by the luminance of its surround (global information). To better understand the neural representation of surface brightness, we investigated the effects of local and global luminance on the activity of neurons in the primary visual cortex (V1) of awake macaque monkeys. Single- and multiple-unit recordings were made from V1 while the monkeys were performing a visual fixation task. The classical receptive field of each neuron was identified as a region responding to a spot stimulus. Neural responses were assessed using homogeneous surfaces at least three times as large as the receptive field as stimuli. We first examined the sensitivity of neurons to variation in local surface luminance, while the luminance of the surround was held constant. The activity of a large majority of surface-responsive neurons (106/115) varied monotonically with changes in surface luminance; in some the dynamic range was over 3 log units. This monotonic relation between surface luminance and neural activity was more evident later in the stimulus period than early on. The effect of the global luminance on neural activity was then assessed in 81 of the surface-responsive neurons by varying the luminance of the surround while holding the luminance of the surface constant. The activity of one group of neurons (25/81) was unaffected by the luminance of the surround; these neurons appear to encode the physical luminance of a surface covering the receptive field. The responses of the other neurons were affected by the luminance of the surround. The effects of the luminances of the surface and the surround on the activities of 26 of these neurons were in the same direction (either increased or decreased), while the effects on the remaining 25 neurons were in opposite directions. The activities of the latter group of neurons seemed to parallel the perceived brightness of the surface, whereas the former seemed to encode the level of illumination. There were differences across different types of neurons with regard to the layer distribution. These findings indicate that global luminance information significantly modulates the activity of surface-responsive V1 neurons and that not only physical luminance, but also perceived brightness, of a homogeneous surface is represented in V1.


Sign in / Sign up

Export Citation Format

Share Document