scholarly journals Structural Studies of the Tandem Tudor Domains of Fragile X Mental Retardation Related Proteins FXR1 and FXR2

PLoS ONE ◽  
2010 ◽  
Vol 5 (11) ◽  
pp. e13559 ◽  
Author(s):  
Melanie A. Adams-Cioaba ◽  
Yahong Guo ◽  
ChuanBing Bian ◽  
Maria F. Amaya ◽  
Robert Lam ◽  
...  
1999 ◽  
Vol 343 (3) ◽  
pp. 517-523 ◽  
Author(s):  
Filippo TAMANINI ◽  
Leontine VAN UNEN ◽  
Cathy BAKKER ◽  
Nicoletta SACCHI ◽  
Hans GALJAARD ◽  
...  

The absence of fragile-X mental-retardation protein (FMRP) results in fragile-X syndrome. Two other fragile-X-related (FXR) proteins have been described, FXR1P and FXR2P, which are both very similar in amino acid sequence to FMRP. Interaction between the three proteins as well as with themselves has been demonstrated. The FXR proteins are believed to play a role in RNA metabolism. To characterize a possible functional role of the interacting proteins the complex formation of the FXR proteins was studied in mammalian cells. Double immunofluorescence analysis in COS cells over-expressing either FMRP ISO12/FXR1P or FMRP ISO12/FXR2P confirmed heterotypic interactions. However, Western-blotting studies on cellular homogenates containing physiological amounts of the three proteins gave different indications. Gel-filtration experiments under physiological as well as EDTA conditions showed that the FXR proteins were in complexes of > 600 kDa, as parts of messenger ribonuclear protein (mRNP) particles associated with polyribosomes. Salt treatment shifted FMRP, FXR1P and FXR2P into distinct intermediate complexes, with molecular masses between 200 and 300 kDa. Immunoprecipitations of FMRP as well as FXR1P from the dissociated complexes revealed that the vast majority of the FXR proteins do not form heteromeric complexes. Further analysis by [35S]methionine labelling in vivo followed by immunoprecipitation indicated that no proteins other than the FXR proteins were present in these complexes. These results suggest that the FXR proteins form homo-multimers preferentially under physiological conditions in mammalian cells, and might participate in mRNP particles with separate functions.


1999 ◽  
Vol 343 (3) ◽  
pp. 517 ◽  
Author(s):  
Filippo TAMANINI ◽  
Leontine VAN UNEN ◽  
Cathy BAKKER ◽  
Nicoletta SACCHI ◽  
Hans GALJAARD ◽  
...  

Science ◽  
2018 ◽  
Vol 361 (6403) ◽  
pp. 709-712 ◽  
Author(s):  
Ethan J. Greenblatt ◽  
Allan C. Spradling

Mutations in the fragile X mental retardation 1 gene (FMR1) cause the most common inherited human autism spectrum disorder. FMR1 influences messenger RNA (mRNA) translation, but identifying functional targets has been difficult. We analyzed quiescent Drosophila oocytes, which, like neural synapses, depend heavily on translating stored mRNA. Ribosome profiling revealed that FMR1 enhances rather than represses the translation of mRNAs that overlap previously identified FMR1 targets, and acts preferentially on large proteins. Human homologs of at least 20 targets are associated with dominant intellectual disability, and 30 others with recessive neurodevelopmental dysfunction. Stored oocytes lacking FMR1 usually generate embryos with severe neural defects, unlike stored wild-type oocytes, which suggests that translation of multiple large proteins by stored mRNAs is defective in fragile X syndrome and possibly other autism spectrum disorders.


Sign in / Sign up

Export Citation Format

Share Document