mental retardation protein
Recently Published Documents


TOTAL DOCUMENTS

395
(FIVE YEARS 81)

H-INDEX

66
(FIVE YEARS 5)

2022 ◽  
Author(s):  
MaKenzie R. Scarpitti ◽  
Julia E. Warrick ◽  
Michael G. Kearse

Loss of functional fragile X mental retardation protein (FMRP) causes fragile X syndrome, the leading form of inherited intellectual disability and the most common monogenic cause of autism spectrum disorders. FMRP is an RNA-binding protein that controls neuronal mRNA localization and translation. Notably, FMRP is thought to inhibit translation elongation after being recruited to target transcripts via binding RNA G-quadruplexes (G4s) within the coding sequence. Here we directly tested this model and report that FMRP inhibits translation elongation independent of mRNA G4s. Furthermore, we found that the RGG box motif together with its natural C-terminal domain forms a non-canonical RNA-binding domain (ncRBD) that binds reporter mRNA and all four polymeric RNA sequences. The ncRBD is essential for FMRP to inhibit translation. Transcripts that are bound by FMRP through the ncRBD co-sediment with heavy polysomes, which is consistent with stalling elongating ribosomes and a subsequent accumulation of slowed polysomes. Together, this work shifts our understanding of how FMRP inhibits translation elongation and supports a model where repression is driven by local FMRP and mRNA concentrations rather than target mRNA sequence.


2021 ◽  
Author(s):  
Bastian Popper ◽  
Tom Scheidt ◽  
Rico Schieweck

Abstract Protein homeostasis (proteostasis) is a prerequisite for cellular viability and plasticity. In particular, post-mitotic cells such as neurons rely on a tightly regulated safeguard system that allows for regulated protein expression. Previous investigations have identified RNA-binding proteins (RBPs) as crucial regulators of protein expression in nerve cells. However, during neurodegeneration, their ability to control the proteome is progressively disrupted. In this review, we examine the malfunction of key RBPs such as TAR DNA-binding protein 43 (TDP-43), Fused in Sarcoma (FUS), Staufen, Pumilio and fragile-X mental retardation protein (FMRP). Therefore, we focus on two key aspects of RBP dysfunctions in neurodegeneration: protein aggregation and dysregulation of their target RNAs. Moreover, we discuss how the chaperone system responds to changes in the RBP-controlled transcriptome. Based on recent findings, we propose a two-hit model in which both, harmful RBP deposits and target mRNA mistranslation contribute to neurodegeneration observed in RBPathologies.


2021 ◽  
Author(s):  
Michelle Ninochka D'Souza ◽  
Sarayu Ramakrishna ◽  
Bindushree K Radhakrishna ◽  
Vishwaja Jhaveri ◽  
Sreenath Ravindran ◽  
...  

The Fragile X Mental Retardation Protein (FMRP) is an RNA Binding Protein that regulates translation of mRNAs, essential for synaptic development and plasticity. FMRP interacts with a specific set of mRNAs and aids in their microtubule dependent transport and regulates their translation through its association with ribosomes. However, the biochemical role of individual domains of FMRP in forming neuronal granules and associating with microtubules and ribosomes is currently undefined. Here, we report that the C-terminus domain of FMRP is sufficient to bind to ribosomes as well as polysomes akin to the full-length protein. Furthermore, the C-terminus domain alone is essential and responsible for FMRP-mediated translation repression in neurons. However, FMRP-mediated puncta formation and microtubule association is favored by the synergistic combination of FMRP domains and not by individual domains. Interestingly, we show that the phosphorylation of hFMRP at Serine-500 is important in modulating the dynamics of translation by controlling ribosome/polysome association. This is a fundamental mechanism governing the size and number of FMRP puncta, which appear to contain actively translating ribosomes. Finally through the use of pathogenic mutations, we emphasize the hierarchy of the domains of FMRP in their contribution to translation regulation.


Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1516
Author(s):  
Tatyana Adayev ◽  
Giuseppe LaFauci ◽  
Weimin Xu ◽  
Carl Dobkin ◽  
Richard Kascsak ◽  
...  

Fragile X syndrome results from the absence of the FMR1 gene product—Fragile X Mental Retardation Protein (FMRP). Fragile X animal research has lacked a reliable method to quantify FMRP. We report the development of an array of FMRP-specific monoclonal antibodies and their application for quantitative assessment of FMRP (qFMRPm) in mouse tissue. To characterize the assay, we determined the normal variability of FMRP expression in four brain structures of six different mouse strains at seven weeks of age. There was a hierarchy of FMRP expression: neocortex > hippocampus > cerebellum > brainstem. The expression of FMRP was highest and least variable in the neocortex, whereas it was most variable in the hippocampus. Male C57Bl/6J and FVB mice were selected to determine FMRP developmental differences in the brain at 3, 7, 10, and 14 weeks of age. We examined the four structures and found a developmental decline in FMRP expression with age, except for the brainstem where it remained stable. qFMRPm assay of blood had highest values in 3 week old animals and dropped by 2.5-fold with age. Sex differences were not significant. The results establish qFMRPm as a valuable tool due to its ease of methodology, cost effectiveness, and accuracy.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
M. Marlborough ◽  
A. Welham ◽  
C. Jones ◽  
S. Reckless ◽  
J. Moss

Abstract Background Whilst up to 60% of males with fragile X syndrome (FXS) meet criteria for autism spectrum disorder (ASD), the prevalence and nature of ASD in females with FXS remains unclear. Method A systematic literature search identified papers reporting ASD prevalence and/or symptomatology in females with FXS. Results and conclusion Meta-analysis suggested that rates of ASD for females with FXS are reliably higher than for females in the general population (a random effects model estimated weighted average prevalence at 14%, 95% CI 13–18%). Whilst papers highlighted a number of social and repetitive difficulties for females with FXS, characteristic profiles of impairment are not clear. Possible associations between ASD traits and IQ, and between ASD and levels of fragile X mental retardation protein, are suggested, but data are equivocal.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Jasbir Singh Dalal ◽  
Kellen Diamond Winden ◽  
Catherine Lourdes Salussolia ◽  
Maria Sundberg ◽  
Achint Singh ◽  
...  

Tuberous sclerosis complex (TSC) is a genetic disorder that is associated with multiple neurological manifestations. Previously, we demonstrated that Tsc1 loss in cerebellar Purkinje cells (PCs) can cause altered social behavior in mice. Here, we performed detailed transcriptional and translational analyses of Tsc1-deficient PCs to understand the molecular alterations in these cells. We found that target transcripts of the Fragile X Mental Retardation Protein (FMRP) are reduced in mutant PCs with evidence of increased degradation. Surprisingly, we observed unchanged ribosomal binding for many of these genes using translating ribosome affinity purification. Finally, we found that multiple FMRP targets, including SHANK2, were reduced, suggesting that compensatory increases in ribosomal binding efficiency may be unable to overcome reduced transcript levels. These data further implicate dysfunction of FMRP and its targets in TSC and suggest that treatments aimed at restoring the function of these pathways may be beneficial.


2021 ◽  
Vol 7 (30) ◽  
pp. eabf8660
Author(s):  
Nicol Birsa ◽  
Agnieszka M. Ule ◽  
Maria Giovanna Garone ◽  
Brian Tsang ◽  
Francesca Mattedi ◽  
...  

FUsed in Sarcoma (FUS) is a multifunctional RNA binding protein (RBP). FUS mutations lead to its cytoplasmic mislocalization and cause the neurodegenerative disease amyotrophic lateral sclerosis (ALS). Here, we use mouse and human models with endogenous ALS-associated mutations to study the early consequences of increased cytoplasmic FUS. We show that in axons, mutant FUS condensates sequester and promote the phase separation of fragile X mental retardation protein (FMRP), another RBP associated with neurodegeneration. This leads to repression of translation in mouse and human FUS-ALS motor neurons and is corroborated in vitro, where FUS and FMRP copartition and repress translation. Last, we show that translation of FMRP-bound RNAs is reduced in vivo in FUS-ALS motor neurons. Our results unravel new pathomechanisms of FUS-ALS and identify a novel paradigm by which mutations in one RBP favor the formation of condensates sequestering other RBPs, affecting crucial biological functions, such as protein translation.


Sign in / Sign up

Export Citation Format

Share Document