scholarly journals Paired Associative Stimulation of the Auditory System: A Proof-Of-Principle Study

PLoS ONE ◽  
2011 ◽  
Vol 6 (11) ◽  
pp. e27088 ◽  
Author(s):  
Martin Schecklmann ◽  
Gregor Volberg ◽  
Gabriele Frank ◽  
Julia Hadersdorfer ◽  
Thomas Steffens ◽  
...  
2011 ◽  
Vol 16 (s2) ◽  
pp. 1-30 ◽  
Author(s):  
Christoph A. von Ilberg ◽  
Uwe Baumann ◽  
Jan Kiefer ◽  
Jochen Tillein ◽  
Oliver F. Adunka

Biomedicines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 77
Author(s):  
Kristin M. Barry ◽  
Donald Robertson ◽  
Wilhelmina H. A. M. Mulders

In the adult auditory system, loss of input resulting from peripheral deafferentation is well known to lead to plasticity in the central nervous system, manifested as reorganization of cortical maps and altered activity throughout the central auditory pathways. The auditory system also has strong afferent and efferent connections with cortico-limbic circuitry including the prefrontal cortex and the question arises whether this circuitry is also affected by loss of peripheral input. Recent studies in our laboratory showed that PFC activation can modulate activity of the auditory thalamus or medial geniculate nucleus (MGN) in normal hearing rats. In addition, we have shown in rats that cochlear trauma resulted in altered spontaneous burst firing in MGN. However, whether the PFC influence on MGN is changed after cochlear trauma is unknown. We investigated the effects of electrical stimulation of PFC on single neuron activity in the MGN in anaesthetized Wistar rats 2 weeks after acoustic trauma or sham surgery. Electrical stimulation of PFC showed a variety of effects in MGN neurons both in sham and acoustic trauma groups but inhibitory responses were significantly larger in the acoustic trauma animals. These results suggest an alteration in functional connectivity between PFC and MGN after cochlear trauma. This change may be a compensatory mechanism increasing sensory gating after the development of altered spontaneous activity in MGN, to prevent altered activity reaching the cortex and conscious perception.


2001 ◽  
Vol 85 (4) ◽  
pp. 1585-1594 ◽  
Author(s):  
Almut Branner ◽  
Richard B. Stein ◽  
Richard A. Normann

Restoration of motor function to individuals who have had spinal cord injuries or stroke has been hampered by the lack of an interface to the peripheral nervous system. A suitable interface should provide selective stimulation of a large number of individual muscle groups with graded recruitment of force. We have developed a new neural interface, the Utah Slanted Electrode Array (USEA), that was designed to be implanted into peripheral nerves. Its goal is to provide such an interface that could be useful in rehabilitation as well as neuroscience applications. In this study, the stimulation capabilities of the USEA were evaluated in acute experiments in cat sciatic nerve. The recruitment properties and the selectivity of stimulation were examined by determining the target muscles excited by stimulation via each of the 100 electrodes in the array and using force transducers to record the force produced in these muscles. It is shown in the results that groups of up to 15 electrodes were inserted into individual fascicles. Stimulation slightly above threshold was selective to one muscle group for most individual electrodes. At higher currents, co-activation of agonist but not antagonist muscles was observed in some instances. Recruitment curves for the electrode array were broader with twitch thresholds starting at much lower currents than for cuff electrodes. In these experiments, it is also shown that certain combinations of electrode pairs, inserted into an individual fascicle, excite fiber populations with substantial overlap, whereas other pairs appear to address independent populations. We conclude that the USEA permits more selective stimulation at much lower current intensities with more graded recruitment of individual muscles than is achieved by conventional cuff electrodes.


2003 ◽  
Vol 184 (1-2) ◽  
pp. 75-81 ◽  
Author(s):  
Makoto Nakamura ◽  
Steffen K. Rosahl ◽  
Eyad Alkahlout ◽  
Alireza Gharabaghi ◽  
Gerhard F. Walter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document