selective stimulation
Recently Published Documents


TOTAL DOCUMENTS

373
(FIVE YEARS 28)

H-INDEX

48
(FIVE YEARS 2)

Cell Reports ◽  
2021 ◽  
Vol 37 (8) ◽  
pp. 110019
Author(s):  
Momotaro Kawai ◽  
Kent Imaizumi ◽  
Mitsuru Ishikawa ◽  
Shinsuke Shibata ◽  
Munehisa Shinozaki ◽  
...  

Author(s):  
Kristen Gelenitis ◽  
Kevin Foglyano ◽  
Lisa Lombardo ◽  
Ronald Triolo

Abstract Background Exercise after paralysis can help prevent secondary health complications, but achieving adequate exercise volumes and intensities is difficult with loss of motor control. Existing electrical stimulation-driven cycling systems involve the paralyzed musculature but result in rapid force decline and muscle fatigue, limiting their effectiveness. This study explores the effects of selective stimulation patterns delivered through multi-contact nerve cuff electrodes on functional exercise output, with the goal of increasing work performed and power maintained within each bout of exercise. Methods Three people with spinal cord injury and implanted stimulation systems performed cycling trials using conventional (S-Max), low overlap (S-Low), low duty cycle (C-Max), and/or combined low overlap and low duty cycle (C-Low) stimulation patterns. Outcome measures include total work (W), end power (Pend), power fluctuation indices (PFI), charge accumulation (Q), and efficiency (η). Mann–Whitney tests were used for statistical comparisons of W and Pend between a selective pattern and S-Max. Welch’s ANOVAs were used to evaluate differences in PFIs among all patterns tested within a participant (n ≥ 90 per stimulation condition). Results At least one selective pattern significantly (p < 0.05) increased W and Pend over S-Max in each participant. All selective patterns also reduced Q and increased η compared with S-Max for all participants. C-Max significantly (p < 0.01) increased PFI, indicating a decrease in ride smoothness with low duty cycle patterns. Conclusions Selective stimulation patterns can increase work performed and power sustained by paralyzed muscles prior to fatigue with increased stimulation efficiency. While still effective, low duty cycle patterns can cause inconsistent power outputs each pedal stroke, but this can be managed by utilizing optimized stimulation levels. Increasing work and sustained power each exercise session has the potential to ultimately improve the physiological benefits of stimulation-driven exercise.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jonathan A. Shulgach ◽  
Dylan W. Beam ◽  
Ameya C. Nanivadekar ◽  
Derek M. Miller ◽  
Stephanie Fulton ◽  
...  

AbstractDysfunction and diseases of the gastrointestinal (GI) tract are a major driver of medical care. The vagus nerve innervates and controls multiple organs of the GI tract and vagus nerve stimulation (VNS) could provide a means for affecting GI function and treating disease. However, the vagus nerve also innervates many other organs throughout the body, and off-target effects of VNS could cause major side effects such as changes in blood pressure. In this study, we aimed to achieve selective stimulation of populations of vagal afferents using a multi-contact cuff electrode wrapped around the abdominal trunks of the vagus nerve. Four-contact nerve cuff electrodes were implanted around the dorsal (N = 3) or ventral (N = 3) abdominal vagus nerve in six ferrets, and the response to stimulation was measured via a 32-channel microelectrode array (MEA) inserted into the left or right nodose ganglion. Selectivity was characterized by the ability to evoke responses in MEA channels through one bipolar pair of cuff contacts but not through the other bipolar pair. We demonstrated that it was possible to selectively activate subpopulations of vagal neurons using abdominal VNS. Additionally, we quantified the conduction velocity of evoked responses to determine what types of nerve fibers (i.e., Aδ vs. C) responded to stimulation. We also quantified the spatial organization of evoked responses in the nodose MEA to determine if there is somatotopic organization of the neurons in that ganglion. Finally, we demonstrated in a separate set of three ferrets that stimulation of the abdominal vagus via a four-contact cuff could selectively alter gastric myoelectric activity, suggesting that abdominal VNS can potentially be used to control GI function.


2021 ◽  
Vol 30 (1) ◽  
pp. 227-236
Author(s):  
H. P. Wang ◽  
Z. Y. Bi ◽  
Y. X. Zhou ◽  
F. Li ◽  
K. P. Wang ◽  
...  

2021 ◽  
Author(s):  
Jonathan A. Shulgach ◽  
Dylan W. Beam ◽  
Ameya C. Nanivadekar ◽  
Derek M. Miller ◽  
Stephanie Fulton ◽  
...  

AbstractDysfunction and diseases of the gastrointestinal (GI) tract are a major driver of medical care. The vagus nerve innervates and controls multiple organs of the GI tract and vagus nerve stimulation (VNS) could provide a means for affecting GI function and treating disease. However, the vagus nerve also innervates many other organs throughout the body, and off-target effects of VNS could cause major side effects such as changes in blood pressure. In this study, we aimed to achieve selective stimulation of populations of vagal afferents using a multi-contact cuff electrode wrapped around the abdominal trunks of the vagus nerve. Four-contact nerve cuff electrodes were implanted around the dorsal (N=3) or ventral (N=3) abdominal vagus nerve in six ferrets, and the response to stimulation was measured via a 32-channel microelectrode array (MEA) inserted into the nodose ganglion. Selectivity was characterized by the ability to evoke responses in MEA channels through one bipolar pair of cuff contacts but not through the other bipolar pair. We demonstrated that is was possible to selectively activate subpopulations of vagal afferents using abdominal VNS. Additionally, we quantified the conduction velocity of evoked responses to determine what types of nerve fibers (i.e. Aδ vs. C) responded to stimulation. We also quantified the spatial organization of evoked responses in the nodose MEA to determine if there is somatotopic organization of the neurons in that ganglion. Finally, we demonstrated in a separate set of three ferrets that stimulation of the abdominal vagus via a four-contact cuff could selectively alter gastric myoelectric activity, suggesting that abdominal VNS can potentially be used to control GI function.


Diagnostics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 188
Author(s):  
Dirk Arnold ◽  
Jovanna Thielker ◽  
Carsten M. Klingner ◽  
Wiebke Caren Puls ◽  
Wengelawit Misikire ◽  
...  

This article describes a first attempt to generate a standardized and safe selective surface electrostimulation (SES) protocol, including detailed instructions on electrode placement and stimulation parameter choice to obtain a selective stimulation of the denervated zygomaticus muscle (ZYG), without unwanted simultaneous activation of other ipsilateral or contralateral facial muscles. Methods: Single pulse stimulation with biphasic triangular and rectangular waveforms and pulse widths (PW) of 1000, 500, 250, 100, 50, 25, 15, 10, 5, 2, 1 ms, at increasing amplitudes between 0.1 and 20 mA was performed. Stimulations delivered in trains were assessed at a PW of 50 ms only. The stimulation was considered successful exclusively if it drew the ipsilateral corner of the mouth upwards and outwards, without the simultaneous activation of other ipsilateral or contralateral facial muscles. I/t curves, accommodation quotient, rheobase, and chronaxie were regularly assessed over 1-year follow-up. Results: 5 facial paralysis patients were assessed. Selective ZYG response in absence of discomfort and unselective contraction of other facial muscle was reproducibly obtained for all the assessed patients. The most effective results with single pulses were observed with PW ≥ 50 ms. The required amplitude was remarkably lower (≤5 mA vs. up to 15 mA) in freshly diagnosed (≤3 months) than in long-term facial paralysis patients (>5 years). Triangular was more effective than rectangular waveform, mostly because of the lower discomfort threshold of the latter. Delivery of trains of stimulation showed similar results to the single pulse setting, though lower amplitudes were necessary to achieve the selective ZYG response. Initial reinnervation signs could be detected effectively by needle-electromyography (n-EMG). Conclusion: It is possible to define stimulation parameters able to elicit an effective selective stimulation of a specific facial muscle, in our case, of the ZYG, without causing discomfort to the patient and without causing unwanted unspecific reactions of other ipsilateral and/or contralateral facial muscles. We observed that the SES success is strongly conditioned by the correct electrode placement, which ideally should exclusively interest the area of the target muscles and its immediate proximity.


Sign in / Sign up

Export Citation Format

Share Document