cuff electrodes
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 20)

H-INDEX

26
(FIVE YEARS 2)

Author(s):  
Jialiang Chen ◽  
Yihua Zhong ◽  
Bing Shen ◽  
Jicheng Wang ◽  
Zhijun Shen ◽  
...  

The purpose of this study is to determine if superficial peroneal nerve stimulation (SPNS) can improve nonobstructive urinary retention (NOUR) induced by prolonged pudendal nerve stimulation (PNS). In this exploratory acute study using 8 cats under anesthesia, PNS and SPNS were applied by nerve cuff electrodes. Skin surface electrodes were also used for SPNS. A double lumen catheter was inserted via the bladder dome for bladder infusion and pressure measurement and to allow voiding without a physical urethral outlet obstruction. The voided and postvoid residual (PVR) volumes were also recorded. NOUR induced by repetitive (4-13 times) application of 30-min PNS significantly (p<0.05) reduced voiding efficiency by 49.5±16.8% of control (78.3±7.9%) with a large PVR volume at 208.2±82.6% of control bladder capacity. SPNS (1 Hz, 0.2 ms) at 1.5 to 2 times threshold intensity (T) for inducing posterior thigh muscle contractions was applied either continuously (SPNSc) or intermittently (SPNSi) during cystometrograms to improve the PNS-induced NOUR. SPNSc and SPNSi applied by nerve cuff electrodes significantly (p<0.05) increased voiding efficiency to 74.5±18.9% and 67.0±15.3%, respectively, and reduced PVR volume to 54.5±39.0% and 88.3±56.0%, respectively. SPNSc and SPNSi applied non-invasively by skin surface electrodes also improved NOUR similar to the stimulation applied by a cuff electrode. This study indicates that abnormal pudendal afferent activity could be a pathophysiological cause for the NOUR occurring in Fowler's syndrome and a noninvasive superficial peroneal neuromodulation therapy might be developed to treat NOUR in patients with Fowler's syndrome.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jonathan A. Shulgach ◽  
Dylan W. Beam ◽  
Ameya C. Nanivadekar ◽  
Derek M. Miller ◽  
Stephanie Fulton ◽  
...  

AbstractDysfunction and diseases of the gastrointestinal (GI) tract are a major driver of medical care. The vagus nerve innervates and controls multiple organs of the GI tract and vagus nerve stimulation (VNS) could provide a means for affecting GI function and treating disease. However, the vagus nerve also innervates many other organs throughout the body, and off-target effects of VNS could cause major side effects such as changes in blood pressure. In this study, we aimed to achieve selective stimulation of populations of vagal afferents using a multi-contact cuff electrode wrapped around the abdominal trunks of the vagus nerve. Four-contact nerve cuff electrodes were implanted around the dorsal (N = 3) or ventral (N = 3) abdominal vagus nerve in six ferrets, and the response to stimulation was measured via a 32-channel microelectrode array (MEA) inserted into the left or right nodose ganglion. Selectivity was characterized by the ability to evoke responses in MEA channels through one bipolar pair of cuff contacts but not through the other bipolar pair. We demonstrated that it was possible to selectively activate subpopulations of vagal neurons using abdominal VNS. Additionally, we quantified the conduction velocity of evoked responses to determine what types of nerve fibers (i.e., Aδ vs. C) responded to stimulation. We also quantified the spatial organization of evoked responses in the nodose MEA to determine if there is somatotopic organization of the neurons in that ganglion. Finally, we demonstrated in a separate set of three ferrets that stimulation of the abdominal vagus via a four-contact cuff could selectively alter gastric myoelectric activity, suggesting that abdominal VNS can potentially be used to control GI function.


SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A320-A320
Author(s):  
Omesh Toolsie ◽  
Rajesh Zacharias ◽  
Joel Oster ◽  
Peter Ostrow ◽  
Greg Schumaker ◽  
...  

Abstract Introduction In patients with moderate to severe obstructive sleep apnea (OSA) who are intolerant to PAP therapy, hypoglossal nerve stimulation (HGNS) is being increasingly considered as alternative treatment. Implantation involves placing cuff electrodes on inclusion branches of the hypoglossal nerve and a respiratory effort-sensing lead which is placed between the right intercostal muscle layers. These are connected to the implantable pulse generator which usually sits in a right infraclavicular pocket. Report of case(s) A 49-year-old male with severe OSA (AHI 30.8/hour) was implanted with a HGNS two years ago with successful activation a month later. He successfully up titrated his amplitude to the maximum stimulation level within his set range (0.9v – 1.7v). He underwent HGNS titration with AHI reduction to 13.9/hour at 2.1 volts and given a new higher range of 1.5 to 2.5 volts. This was accompanied by reduction in snoring, witnessed apneas and associated arousals with more consolidated sleep and improvement in his Epworth sleepiness score to 3 from 12 as noted prior to HGNS. The patient continued to up titrate over the next six months within his new range to 2.4 volts, when he reported increased sensitivity and intolerance at every stimulation level with recurrence of snoring and daytime sleepiness. He underwent interrogation of his device with subsequent awake endoscopy and change to his electrode configuration with a new lower range of 1.0 to 2.0 volts. However, he continued to have the same complaints. A second interrogation revealed increased impedance within the circuit of the respiratory sensing lead which was reproducible. The patient underwent sensing lead replacement in the operating room. He has since been able to increase stimulation levels without complaints and improvement in his OSA symptoms and is scheduled to have a follow-up hone sleep test (HST). Conclusion This case illustrates the importance of a structured approach in the evaluation of a reduced tolerance to HGNS. This includes assessing adherence, interrogation of the device’s circuitry, evaluating electrode configurations, stimulation thresholds with consideration for awake endoscopy. Repeating this process may be necessary to detect rare or delayed mechanical problems that may occur over time with HGNS. Support (if any):


Author(s):  
Jialiang Chen ◽  
Anand Mohapatra ◽  
Jun Zhao ◽  
Yihua Zhong ◽  
Bing Shen ◽  
...  

The purpose of this study is to determine if superficial peroneal nerve stimulation (SPNS) can reverse persistent bladder underactivity induced by prolonged pudendal nerve stimulation (PNS). In 16 α‐chloralose anesthetized cats, PNS and SPNS were applied by nerve cuff electrodes. Skin surface electrodes were also used for SPNS. Bladder underactivity consisting of a significant increase in bladder capacity to 157.8±10.9% of control and a significant reduction in bladder contraction amplitude to 56.0±5.0% of control was induced by repetitive (4-16 times) application of 30-min PNS. SPNS (1 Hz, 0.2 ms) at 1.5 to 2 times threshold intensity (T) for inducing posterior thigh muscle contractions was applied either continuously (SPNSc) or intermittently (SPNSi) during a cystometrogram (CMG) to determine if the stimulation can reverse the PNS-induced bladder underactivity. SPNSc or SPNSi applied by nerve cuff electrodes during the prolonged PNS inhibition significantly reduced bladder capacity to 124.4±10.7% and 132.4±14.2% of control, respectively, and increased contraction amplitude to 85.3±6.2% and 75.8±4.7%, respectively. Transcutaneous SPNSc and SPNSi also significantly reduced bladder capacity and increased contraction amplitude. Additional PNS applied during the bladder underactivity further increased bladder capacity, while SPNSc applied simultaneously with the PNS reversed the increase in bladder capacity. This study indicates that a non-invasive superficial peroneal neuromodulation therapy might be developed to treat bladder underactivity caused by abnormal pudendal nerve somatic afferent activation that is hypothesized to occur in patients with Fowler's syndrome.


2021 ◽  
Author(s):  
Jonathan A. Shulgach ◽  
Dylan W. Beam ◽  
Ameya C. Nanivadekar ◽  
Derek M. Miller ◽  
Stephanie Fulton ◽  
...  

AbstractDysfunction and diseases of the gastrointestinal (GI) tract are a major driver of medical care. The vagus nerve innervates and controls multiple organs of the GI tract and vagus nerve stimulation (VNS) could provide a means for affecting GI function and treating disease. However, the vagus nerve also innervates many other organs throughout the body, and off-target effects of VNS could cause major side effects such as changes in blood pressure. In this study, we aimed to achieve selective stimulation of populations of vagal afferents using a multi-contact cuff electrode wrapped around the abdominal trunks of the vagus nerve. Four-contact nerve cuff electrodes were implanted around the dorsal (N=3) or ventral (N=3) abdominal vagus nerve in six ferrets, and the response to stimulation was measured via a 32-channel microelectrode array (MEA) inserted into the nodose ganglion. Selectivity was characterized by the ability to evoke responses in MEA channels through one bipolar pair of cuff contacts but not through the other bipolar pair. We demonstrated that is was possible to selectively activate subpopulations of vagal afferents using abdominal VNS. Additionally, we quantified the conduction velocity of evoked responses to determine what types of nerve fibers (i.e. Aδ vs. C) responded to stimulation. We also quantified the spatial organization of evoked responses in the nodose MEA to determine if there is somatotopic organization of the neurons in that ganglion. Finally, we demonstrated in a separate set of three ferrets that stimulation of the abdominal vagus via a four-contact cuff could selectively alter gastric myoelectric activity, suggesting that abdominal VNS can potentially be used to control GI function.


2021 ◽  
Vol 15 ◽  
Author(s):  
Matthew T. Flavin ◽  
Marek A. Paul ◽  
Alexander S. Lim ◽  
Senan Abdulhamed ◽  
Charles A. Lissandrello ◽  
...  

For many peripheral neuro-modulation applications, the cuff electrode has become a preferred technology for delivering electrical current into targeted volumes of tissue. While basic cuffs with low spatial selectivity, having longitudinally arranged contacts, can be produced from relatively straightforward processes, the fabrication of more complex electrode configurations typically requires iterative design and clean-room fabrication with skilled technicians. Although facile methods for fabricating cuff electrodes exist, their inconsistent products have limited their adoption for rapid manufacturing. In this article, we report a fast, low-cost fabrication process for patterning of electrode contacts in an implantable peripheral nerve cuff. Using a laser cutter as we have prescribed, the designer can render precise contact geometries that are consistent between batches. This method is enabled by the use of silicone/carbon black (CB) composite electrodes, which integrate with the patterned surface of its substrate—tubular silicone insulation. The size and features of its products can be adapted to fit a wide range of nerve diameters and applications. In this study, we specifically documented the manufacturing and evaluation of circumpolar cuffs with radial arrays of three contacts for acute implantation on the rat sciatic nerve. As part of this method, we also detail protocols for verification—electrochemical characterization—and validation—electrophysiological evaluation—of implantable cuff electrodes. Applied to our circumpolar cuff electrode, we report favorable electrical characteristics. In addition, we report that it reproduces expected electrophysiological behaviors described in prior literature. No specialized equipment or fabrication experience was required in our production, and we encountered negligible costs relative to commercially available solutions. Since, as we demonstrate, this process generates consistent and precise electrode geometries, we propose that it has strong merits for use in rapid manufacturing.


Author(s):  
Laura M. Ferrari ◽  
Bruno Rodríguez-Meana ◽  
Alberto Bonisoli ◽  
Annarita Cutrone ◽  
Silvestro Micera ◽  
...  

Neural regeneration after lesions is still limited by several factors and new technologies are developed to address this issue. Here, we present and test in animal models a new regenerative nerve cuff electrode (RnCE). It is based on a novel low-cost fabrication strategy, called “Print and Shrink”, which combines the inkjet printing of a conducting polymer with a heat-shrinkable polymer substrate for the development of a bioelectronic interface. This method allows to produce miniaturized regenerative cuff electrodes without the use of cleanroom facilities and vacuum based deposition methods, thus highly reducing the production costs. To fully proof the electrodes performance in vivo we assessed functional recovery and adequacy to support axonal regeneration after section of rat sciatic nerves and repair with RnCE. We investigated the possibility to stimulate the nerve to activate different muscles, both in acute and chronic scenarios. Three months after implantation, RnCEs were able to stimulate regenerated motor axons and induce a muscular response. The capability to produce fully-transparent nerve interfaces provided with polymeric microelectrodes through a cost-effective manufacturing process is an unexplored approach in neuroprosthesis field. Our findings pave the way to the development of new and more usable technologies for nerve regeneration and neuromodulation.


Sign in / Sign up

Export Citation Format

Share Document