scholarly journals Genetic Connectivity in Scleractinian Corals across the Northern Gulf of Mexico: Oil/Gas Platforms, and Relationship to the Flower Garden Banks

PLoS ONE ◽  
2012 ◽  
Vol 7 (4) ◽  
pp. e30144 ◽  
Author(s):  
Paul W. Sammarco ◽  
Daniel A. Brazeau ◽  
James Sinclair
2017 ◽  
Vol 51 (4) ◽  
pp. 41-51
Author(s):  
Elizabeth Ramey ◽  
Steven F. DiMarco ◽  
Karen Dreger ◽  
Heather M. Zimmerle

AbstractThe Gulf of Mexico Coastal Hypoxia Glider Experiment was designed to assess the feasibility of using ocean glider technology in the coastal hypoxic zone of the northern Gulf of Mexico in Summer/Fall 2014. The objectives were (1) to coordinate and operate multiple autonomous buoyancy ocean gliders in depths less than 50 m and (2) to determine how close to the bottom gliders can reliably reach without making contact. Strong vertical and horizontal stratification gradients, strong coastal currents, and the low-oxygen conditions that occur within the lower water column characterize the coastal area of the northern Gulf of Mexico. These environmental conditions combine with the presence of more than 5,000 surface piercing oil/gas structures to make piloting and navigation in the region challenging. We quantify glider performance to assess the usefulness of buoyancy gliders to address the National Oceanic and Atmospheric Administration Action Plan goal to monitor the spatial extent, duration, and severity of the Gulf hypoxic zone. We find that the gliders, despite the operational challenges, were consistently able to travel from the surface to the oxygen-depleted depths of subpycnocline waters, that is, within 2 m of the ocean bottom. Our assessment is that gliders are able to provide real-time observations suitable to monitor coastal hypoxia.


2021 ◽  
Author(s):  
Guangpeng Liu ◽  
Annalisa Bracco ◽  
Andrea M. Quattrini ◽  
Santiago Herrera

AbstractFine-scale larval dispersal and connectivity processes are key to species survival, growth, recovery and adaptation under rapidly changing disturbances. Quantifying both are required to develop any effective management strategy. In the present work, we examine the dispersal pattern and potential connectivity of a common deep-water coral, Paramuricea biscaya, found in the northern Gulf of Mexico by evaluating predictions of physical models with estimates of genetic connectivity. While genetic approaches provide estimates of realized connectivity, they do not provide information on the dispersal process. Physical circulation models can now achieve kilometer-scale resolution sufficient to provide detailed insight into the pathways and scales of larval dispersal. A high-resolution regional ocean circulation model is integrated for 2015 and its advective pathways are compared with the outcome of the genetic connectivity estimates of corals collected at six locations over the continental slope at depths comprised between 1000 and 3000 meters. Furthermore, the likely interannual variability is extrapolated using ocean hindcasts available for this basin. The general connectivity pattern exhibits a dispersal trend from east to west following 1000 to 2000-meter isobaths, corresponding to the overall westward near-bottom circulation. The connectivity networks predicted by our model were mostly congruent with the estimated genetic connectivity patterns. Our results show that although dispersal distances of 100 km or less are common, depth differences between tens to a few hundred meters can effectively limit larval dispersal. A probabilistic graphic model suggests that stepping-stone dispersal mediated by intermediate sites provides a likely mechanism for long-distance connectivity between the populations separated by distances of 300 km or greater, such as those found in the DeSoto and Keathley canyons.


2021 ◽  
Vol 8 ◽  
Author(s):  
Guangpeng Liu ◽  
Annalisa Bracco ◽  
Andrea M. Quattrini ◽  
Santiago Herrera

Fine-scale larval dispersal and connectivity processes are key to species survival, growth, recovery and adaptation under rapidly changing disturbances. Quantifying both are required to develop any effective management strategy. In the present work, we examine the dispersal pattern and potential connectivity of a common deep-water coral, Paramuricea biscaya, found in the northern Gulf of Mexico by evaluating predictions of physical models with estimates of genetic connectivity. While genetic approaches provide estimates of realized connectivity, they do not provide information on the dispersal process. Physical circulation models can now achieve kilometer-scale resolution sufficient to provide detailed insight into the pathways and scales of larval dispersal. A high-resolution regional ocean circulation model is integrated for 2015 and its advective pathways are compared with the outcome of the genetic connectivity estimates of corals collected at six locations over the continental slope at depths comprised between 1,000 and 3,000 m. Furthermore, the likely interannual variability is extrapolated using ocean hindcasts available for this basin. The general connectivity pattern exhibits a dispersal trend from east to west following 1,000 to 2,000-m isobaths, corresponding to the overall westward near-bottom circulation. The connectivity networks predicted by our model were mostly congruent with the estimated genetic connectivity patterns. Our results show that although dispersal distances of 100 km or less are common, depth differences between tens to a few hundred meters can effectively limit larval dispersal. A probabilistic graphic model suggests that stepping-stone dispersal mediated by intermediate sites provides a likely mechanism for long-distance connectivity between the populations separated by distances of 300 km or greater, such as those found in the DeSoto and Keathley canyons.


2018 ◽  
Vol 208 ◽  
pp. 63-81 ◽  
Author(s):  
Yongxue Liu ◽  
Chuanmin Hu ◽  
Chao Sun ◽  
Wenfeng Zhan ◽  
Shaojie Sun ◽  
...  

2014 ◽  
Vol 505 ◽  
pp. 209-226 ◽  
Author(s):  
H Zhang ◽  
DM Mason ◽  
CA Stow ◽  
AT Adamack ◽  
SB Brandt ◽  
...  

Data Series ◽  
10.3133/ds400 ◽  
2009 ◽  
Author(s):  
Kathryn E.L. Smith ◽  
Amar Nayegandhi ◽  
C. Wayne Wright ◽  
Jamie M. Bonisteel ◽  
John C. Brock

Sign in / Sign up

Export Citation Format

Share Document