Genetic Connectivity in Corals on the Flower Garden Banks and Surrounding Oil/Gas Platforms, Gulf of Mexico

2008 ◽  
Vol 365 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Amy D. Atchison ◽  
Paul W. Sammarco ◽  
Daniel A. Brazeau
2017 ◽  
Vol 51 (4) ◽  
pp. 41-51
Author(s):  
Elizabeth Ramey ◽  
Steven F. DiMarco ◽  
Karen Dreger ◽  
Heather M. Zimmerle

AbstractThe Gulf of Mexico Coastal Hypoxia Glider Experiment was designed to assess the feasibility of using ocean glider technology in the coastal hypoxic zone of the northern Gulf of Mexico in Summer/Fall 2014. The objectives were (1) to coordinate and operate multiple autonomous buoyancy ocean gliders in depths less than 50 m and (2) to determine how close to the bottom gliders can reliably reach without making contact. Strong vertical and horizontal stratification gradients, strong coastal currents, and the low-oxygen conditions that occur within the lower water column characterize the coastal area of the northern Gulf of Mexico. These environmental conditions combine with the presence of more than 5,000 surface piercing oil/gas structures to make piloting and navigation in the region challenging. We quantify glider performance to assess the usefulness of buoyancy gliders to address the National Oceanic and Atmospheric Administration Action Plan goal to monitor the spatial extent, duration, and severity of the Gulf hypoxic zone. We find that the gliders, despite the operational challenges, were consistently able to travel from the surface to the oxygen-depleted depths of subpycnocline waters, that is, within 2 m of the ocean bottom. Our assessment is that gliders are able to provide real-time observations suitable to monitor coastal hypoxia.


2005 ◽  
Vol 2005 (1) ◽  
pp. 725-730
Author(s):  
Zhen-Gang Ji ◽  
Walter R. Johnson ◽  
Charles F. Marshall ◽  
James M. Price

ABSTRACT As a Federal agency within the U.S. Department of the Interior (DOI), the Minerals Management Service (MMS) maintains a leasing program for commercial oil and gas development on the U.S. Outer Continental Shelf (OCS). Oil and gas activities in deep water (areas deeper than 340 meters) have proceeded at an unprecedented rate, and have led to concerns regarding the accidental release of oil near the seafloor. As production increases, the potential for an oil/gas spill increases. In addition to the environmental impacts of the oil spilled, major concerns from a deepwater oil/gas spill include fire, toxic hazard to the people working on the surface installations, and loss of buoyancy by ships and any floating installations. Oil and natural gas releases in deep water behave much differently than in shallow water, primarily due to density stratification, high pressures, and low temperatures. It is important to know whether oil will surface and if so, where, when, and how thick the oil slick will be. To meet these new challenges, spill response plans need to be upgraded. An important component of such a plan would be a model to simulate the behavior of oil and gasses accidentally released in deep water. This has significant implications for environmental impact assessment, oil-spill cleanup, contingency planning, and source tracing. The MMS uses the Clarkson Deepwater Oil and Gas Blowout (CDOG) plume model to simulate the behavior of oil and gas accidentally released in deepwater areas. The CDOG model is a near field model. In addition, MMS uses an adaptation of the Princeton Ocean Model called the Princeton Regional Ocean Forecast and Hindcast System for the Gulf of Mexico (PROFS-GOM). This model is a far field model and is employed to provide three dimensional current, temperature, and salinity data to the CDOG model. The PROFS-GOM model and the CDOG model are used to simulate deepwater oil spills in the Gulf of Mexico. Modeling results indicate that the two models can provide important information on the behavior of oil spills in deepwater and assist MMS in estimating the associated environmental risks. Ultimately, this information will be used in the pertinent environmental impact assessments MMS performs and in the development of deepwater oil-spill response plans.


Coral Reefs ◽  
2013 ◽  
Vol 33 (1) ◽  
pp. 241-251 ◽  
Author(s):  
C. A. Villegas Sánchez ◽  
H. Pérez España ◽  
R. Rivera Madrid ◽  
D. Salas Monreal ◽  
J. E. Arias González

2021 ◽  
Author(s):  
Guangpeng Liu ◽  
Annalisa Bracco ◽  
Andrea M. Quattrini ◽  
Santiago Herrera

AbstractFine-scale larval dispersal and connectivity processes are key to species survival, growth, recovery and adaptation under rapidly changing disturbances. Quantifying both are required to develop any effective management strategy. In the present work, we examine the dispersal pattern and potential connectivity of a common deep-water coral, Paramuricea biscaya, found in the northern Gulf of Mexico by evaluating predictions of physical models with estimates of genetic connectivity. While genetic approaches provide estimates of realized connectivity, they do not provide information on the dispersal process. Physical circulation models can now achieve kilometer-scale resolution sufficient to provide detailed insight into the pathways and scales of larval dispersal. A high-resolution regional ocean circulation model is integrated for 2015 and its advective pathways are compared with the outcome of the genetic connectivity estimates of corals collected at six locations over the continental slope at depths comprised between 1000 and 3000 meters. Furthermore, the likely interannual variability is extrapolated using ocean hindcasts available for this basin. The general connectivity pattern exhibits a dispersal trend from east to west following 1000 to 2000-meter isobaths, corresponding to the overall westward near-bottom circulation. The connectivity networks predicted by our model were mostly congruent with the estimated genetic connectivity patterns. Our results show that although dispersal distances of 100 km or less are common, depth differences between tens to a few hundred meters can effectively limit larval dispersal. A probabilistic graphic model suggests that stepping-stone dispersal mediated by intermediate sites provides a likely mechanism for long-distance connectivity between the populations separated by distances of 300 km or greater, such as those found in the DeSoto and Keathley canyons.


2021 ◽  
Vol 8 ◽  
Author(s):  
Guangpeng Liu ◽  
Annalisa Bracco ◽  
Andrea M. Quattrini ◽  
Santiago Herrera

Fine-scale larval dispersal and connectivity processes are key to species survival, growth, recovery and adaptation under rapidly changing disturbances. Quantifying both are required to develop any effective management strategy. In the present work, we examine the dispersal pattern and potential connectivity of a common deep-water coral, Paramuricea biscaya, found in the northern Gulf of Mexico by evaluating predictions of physical models with estimates of genetic connectivity. While genetic approaches provide estimates of realized connectivity, they do not provide information on the dispersal process. Physical circulation models can now achieve kilometer-scale resolution sufficient to provide detailed insight into the pathways and scales of larval dispersal. A high-resolution regional ocean circulation model is integrated for 2015 and its advective pathways are compared with the outcome of the genetic connectivity estimates of corals collected at six locations over the continental slope at depths comprised between 1,000 and 3,000 m. Furthermore, the likely interannual variability is extrapolated using ocean hindcasts available for this basin. The general connectivity pattern exhibits a dispersal trend from east to west following 1,000 to 2,000-m isobaths, corresponding to the overall westward near-bottom circulation. The connectivity networks predicted by our model were mostly congruent with the estimated genetic connectivity patterns. Our results show that although dispersal distances of 100 km or less are common, depth differences between tens to a few hundred meters can effectively limit larval dispersal. A probabilistic graphic model suggests that stepping-stone dispersal mediated by intermediate sites provides a likely mechanism for long-distance connectivity between the populations separated by distances of 300 km or greater, such as those found in the DeSoto and Keathley canyons.


2018 ◽  
Vol 208 ◽  
pp. 63-81 ◽  
Author(s):  
Yongxue Liu ◽  
Chuanmin Hu ◽  
Chao Sun ◽  
Wenfeng Zhan ◽  
Shaojie Sun ◽  
...  

2013 ◽  
Vol 147 ◽  
pp. 338-343 ◽  
Author(s):  
Pablo de Jesús Suárez-Moo ◽  
Axayácatl Rocha-Olivares ◽  
Omar Zapata-Pérez ◽  
Adriana Quiroz-Moreno ◽  
Lorenzo Felipe Sánchez-Teyer

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8485
Author(s):  
Oscar de Jesús Rosado-Nic ◽  
J. Derek Hogan ◽  
José Héctor Lara-Arenas ◽  
Rigoberto Rosas-Luis ◽  
Laura Carrillo ◽  
...  

Background The gray snapper (Lutjanus griseus) has a tropical and subtropical distribution. In much of its range this species represents one of the most important fishery resources because of its high quality meat and market value. Due to this, this species is vulnerable to overfishing, and population declines have been observed in parts of its range. In recent decades, it has been established that knowing the level of genetic connectivity is useful for establishing appropriate management and conservation strategies given that genetic isolation can drive towards genetic loss. Presently the level of genetic connectivity between subpopulations of L. griseus of the southern region of the Gulf of Mexico and the Caribbean Sea remains unknown. Methods In the present study we analyze genetic structure and diversity for seven subpopulations in the southern Gulf of Mexico and the Mexican Caribbean Sea. Eight microsatellite primers of phylogenetically closely related species to L. griseus were selected. Results Total heterozygosity was 0.628 and 0.647 in the southern Gulf of Mexico and the Mexican Caribbean Sea, however, results obtained from AMOVA and RST indicated a lack of genetic difference between the major basins. We also found no association between genetic difference and geographic distance, and moderately high migration rates (Nm = > 4.1) suggesting ongoing gene flow among the subpopulations. Gene flow within the southern Gulf of Mexico appears to be stronger going from east-to-west. Conclusions Migration rates tended to be higher between subpopulations within the same basin compared to those across basins indicating some regionalization. High levels of genetic diversity and genetic flow suggest that the population is quite large; apparently, the fishing pressure has not caused a bottleneck effect.


Sign in / Sign up

Export Citation Format

Share Document