Exploration of real-time satellite measurements to advance hurricane intensity prediction in the northern Gulf of Mexico

OCEANS 2009 ◽  
2009 ◽  
Author(s):  
Nan Walker ◽  
Robert Leben ◽  
Steven Anderson ◽  
Alaric Haag ◽  
Chet Pilley ◽  
...  
2019 ◽  
Vol 34 (4) ◽  
pp. 985-997 ◽  
Author(s):  
Kirkwood A. Cloud ◽  
Brian J. Reich ◽  
Christopher M. Rozoff ◽  
Stefano Alessandrini ◽  
William E. Lewis ◽  
...  

Abstract A feed forward neural network (FFNN) is developed for tropical cyclone (TC) intensity prediction, where intensity is defined as the maximum 1-min average 10-m wind speed. This deep learning model incorporates a real-time operational estimate of the current intensity and predictors derived from Hurricane Weather Research and Forecasting (HWRF; 2017 version) Model forecasts. The FFNN model is developed with the operational constraint of being restricted to 6-h-old HWRF data. Best track intensity data are used for observational verification. The forecast training data are from 2014 to 2016 HWRF reforecast data and cover a wide variety of TCs from both the Atlantic and eastern Pacific Ocean basins. Cross validation shows that the FFNN increasingly outperforms the operational observation-adjusted HWRF (HWFI) in terms of mean absolute error (MAE) at forecast lead times from 3 to 57 h. Out-of-sample testing on real-time data from 2017 shows the HWFI produces lower MAE than the FFNN at lead times of 24 h or less and similar MAEs at later lead times. On the other hand, the 2017 data indicate significant potential for the FFNN in the prediction of rapid intensification (RI), with RI defined here as an intensification of at least 30 kt (1 kt ≈ 0.51 m s−1) in a 24-h period. The FFNN produces 4 times the number of hits in HWFI for RI. While the FFNN has more false alarms than the HWFI, Brier skill scores show that, in the Atlantic, the FFNN has significantly greater skill than the HWFI and probabilistic Statistical Hurricane Intensity Prediction System RI index.


2018 ◽  
Vol 33 (6) ◽  
pp. 1587-1603 ◽  
Author(s):  
Udai Shimada ◽  
Hiromi Owada ◽  
Munehiko Yamaguchi ◽  
Takeshi Iriguchi ◽  
Masahiro Sawada ◽  
...  

Abstract The Statistical Hurricane Intensity Prediction Scheme (SHIPS) is a multiple regression model for forecasting tropical cyclone (TC) intensity [both central pressure (Pmin) and maximum wind speed (Vmax)]. To further improve the accuracy of the Japan Meteorological Agency version of SHIPS, five new predictors associated with TC rainfall and structural features were incorporated into the scheme. Four of the five predictors were primarily derived from the hourly Global Satellite Mapping of Precipitation (GSMaP) reanalysis product, which is a microwave satellite-derived rainfall dataset. The predictors include the axisymmetry of rainfall distribution around a TC multiplied by ocean heat content (OHC), rainfall areal coverage, the radius of maximum azimuthal mean rainfall, and total volumetric rain multiplied by OHC. The fifth predictor is the Rossby number. Among these predictors, the axisymmetry multiplied by OHC had the greatest impact on intensity change, particularly, at forecast times up to 42 h. The forecast results up to 5 days showed that the mean absolute error (MAE) of the Pmin forecast in SHIPS with the new predictors was improved by over 6% in the first half of the forecast period. The MAE of the Vmax forecast was also improved by nearly 4%. Regarding the Pmin forecast, the improvement was greatest (up to 13%) for steady-state TCs, including those initialized as tropical depressions, with slight improvement (2%–5%) for intensifying TCs. Finally, a real-time forecast experiment utilizing the hourly near-real-time GSMaP product demonstrated the improvement of the SHIPS forecasts, confirming feasibility for operational use.


2014 ◽  
Vol 505 ◽  
pp. 209-226 ◽  
Author(s):  
H Zhang ◽  
DM Mason ◽  
CA Stow ◽  
AT Adamack ◽  
SB Brandt ◽  
...  

Data Series ◽  
10.3133/ds400 ◽  
2009 ◽  
Author(s):  
Kathryn E.L. Smith ◽  
Amar Nayegandhi ◽  
C. Wayne Wright ◽  
Jamie M. Bonisteel ◽  
John C. Brock

Data Series ◽  
10.3133/ds384 ◽  
2008 ◽  
Author(s):  
Amar Nayegandhi ◽  
John C. Brock ◽  
Abby Sallenger ◽  
C. Wayne Wright ◽  
Laurinda J. Travers ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document