scholarly journals Chemical Cues Influence Pupation Behavior of Drosophila simulans and Drosophila buzzatii in Nature and in the Laboratory

PLoS ONE ◽  
2012 ◽  
Vol 7 (6) ◽  
pp. e39393 ◽  
Author(s):  
Marcial Beltramí ◽  
María Cristina Medina-Muñoz ◽  
Francisco Del Pino ◽  
Jean-Francois Ferveur ◽  
Raúl Godoy-Herrera
2014 ◽  
Vol 281 (1784) ◽  
pp. 20140043 ◽  
Author(s):  
Jean-Pierre Farine ◽  
Jérôme Cortot ◽  
Jean-François Ferveur

Insects use chemosensory cues to feed and mate. In Drosophila , the effect of pheromones has been extensively investigated in adults, but rarely in larvae. The colonization of natural food sources by Drosophila buzzatii and Drosophila simulans species may depend on species-specific chemical cues left in the food by larvae and adults. We identified such chemicals in both species and measured their influence on larval food preference and puparation behaviour. We also tested compounds that varied between these species: (i) two larval volatile compounds: hydroxy-3-butanone-2 and phenol (predominant in D. simulans and D. buzzatii , respectively), and (ii) adult cuticular hydrocarbons (CHs). Drosophila buzzatii larvae were rapidly attracted to non-CH adult conspecific cues, whereas D. simulans larvae were strongly repulsed by CHs of the two species and also by phenol. Larval cues from both species generally reduced larval attraction and pupariation on food, which was generally—but not always—low, and rarely reflected larval response. As these larval and adult pheromones specifically influence larval food search and the choice of a pupariation site, they may greatly affect the dispersion and survival of Drosophila species in nature.


1988 ◽  
Vol 62 (4) ◽  
pp. 1266-1270 ◽  
Author(s):  
C Louis ◽  
M Lopez-Ferber ◽  
M Comendador ◽  
N Plus ◽  
G Kuhl ◽  
...  
Keyword(s):  

Genetics ◽  
1961 ◽  
Vol 46 (8) ◽  
pp. 971-981
Author(s):  
A Di Pasquale ◽  
S Koref-Santibaňez

2021 ◽  
Vol 537 ◽  
pp. 151516
Author(s):  
Emily E. Waddell ◽  
Wendy E.D. Piniak ◽  
Kathleen A. Reinsel ◽  
James M. Welch

Chemoecology ◽  
2021 ◽  
Author(s):  
Roman Bucher ◽  
Laura M. Japke ◽  
Ayse Gül Ünlü ◽  
Florian Menzel

AbstractThe predator-predator naïveté hypothesis suggests that non-native predators benefit from being unknown to native predators, resulting in reduced intraguild interference with native predators. This novelty advantage should depend on the ability of native predators to recognize cues of non-native predators. Here, we compared ant aggression and lady beetle reaction in four native and the invasive lady beetle species Harmonia axyridis. In addition, we tested whether lady beetle cuticular hydrocarbons (CHCs) are involved in species recognition, which might explain naïveté if the invasive species has a specific CHC profile. To this end, we conducted behavioral assays confronting two native ant species with both living lady beetles and lady beetle elytra bearing or lacking CHCs of different lady beetle species. Finally, we characterized CHC profiles of the lady beetles using GC–MS. In general, the aggression of Lasius niger was more frequent than that of Myrmica rubra and L. niger aggression was more frequent towards most native lady beetle species compared to H. axyridis. The removal of CHCs from lady beetle elytra reduced aggression of both ant species. If CHCs of respective lady beetle species were added on cue-free elytra, natural strength of L. niger aggression could be restored. CHC analyses revealed a distinct cue composition for each lady beetle species. Our experiments demonstrate that the presence of chemical cues on the surface of lady beetles contribute to the strength of ant aggression against lady beetles. Reduced aggression of L. niger towards H. axyridis and reduced avoidance behavior in H. axyridis compared to the equally voracious C. septempunctata might improve the invasive lady beetle’s access to ant-tended aphids.


Genetics ◽  
1999 ◽  
Vol 153 (4) ◽  
pp. 1683-1699 ◽  
Author(s):  
Stuart J Macdonald ◽  
David B Goldstein

Abstract A quantitative trait locus (QTL) genetic analysis of morphological and reproductive traits distinguishing the sibling species Drosophila simulans and D. sechellia was carried out in a backcross design, using 38 markers with an average spacing of 8.4 cM. The direction of QTL effects for the size of the posterior lobe was consistent across the identified QTL, indicating directional selection for this trait. Directional selection also appears to have acted on testis length, indicating that sexual selection may have influenced many reproductive traits, although other forms of directional selection cannot be ruled out. Sex comb tooth number exhibited high levels of variation both within and among isofemale lines and showed no evidence for directional selection and, therefore, may not have been involved in the early speciation process. A database search for genes associated with significant QTL revealed a set of candidate loci for posterior lobe shape and size, sex comb tooth number, testis length, tibia length, and hybrid male fertility. In particular, decapentaplegic (dpp), a gene known to influence the genital arch, was found to be associated with the largest LOD peak for posterior lobe shape and size.


Sign in / Sign up

Export Citation Format

Share Document