scholarly journals Long Bone Histology and Growth Patterns in Ankylosaurs: Implications for Life History and Evolution

PLoS ONE ◽  
2013 ◽  
Vol 8 (7) ◽  
pp. e68590 ◽  
Author(s):  
Martina Stein ◽  
Shoji Hayashi ◽  
P. Martin Sander
Author(s):  
Viktoriia KAMSKA ◽  
Edward B. DAESCHLER ◽  
Jason P. DOWNS ◽  
Per E. AHLBERG ◽  
Paul TAFFOREAU ◽  
...  

ABSTRACTHyneria lindae is one of the largest Devonian sarcopterygians. It was found in the Catskill Formation (late Famennian) of Pennsylvania, USA. The current study focuses on the palaeohistology of the humerus of this tristichopterid and supports a low ossification rate and a late ossification onset in the appendicular skeleton. In addition to anatomical features, the large size of the cell lacunae in the cortical bone of the humerus mid-shaft may suggest a large genome size and associated neotenic condition for this species, which could, in turn, be a partial explanation for the large size of H. lindae. The low metabolism of H. lindae revealed here by bone histology supports the hypothesis of an ambush predatory behaviour. Finally, the lines-of-arrested-growth pattern and late ossification of specimen ANSP 21483 suggest that H. lindae probably had a long juvenile stage before reaching sexual maturity. Although very few studies address the life-history traits of stem tetrapods, they all propose a slow limb development for the studied taxa despite different ecological conditions and presumably distinct behaviours. The bone histology of H. lindae would favour the hypothesis that a slow long-bone development could be a general character for stem tetrapods.


Fossil Record ◽  
1999 ◽  
Vol 2 (1) ◽  
pp. 103-112 ◽  
Author(s):  
P. M. Sander

Abstract. Sauropod dinosaurs present exceptional challenges in understanding their biology because of their exceptional body size. One of these, life history, can be inferred from the histology of their bones. For this purpose, the diverse sauropod assemblage of the Upper Jurassic Tendaguru beds was sampled with a new coring method which provided unprecented access to and insights into sauropod bone histology. Growth series of humeri and femora as well as long growth records from single bones suggest that all four sauropod taxa are characterized by continued growth after sexual maturity but that growth was determinate. Fibrolamellär bone is dominant in the samples, indicating that the bones of the Tendaguru sauropods grew at rates comparable to those of modern large mammals. The growth pattern of these sauropods thus combines typically reptilian traits with typically mammalian traits. In the details of their bone histology, the Tendaguru sauropod taxa show considerable variation which reflects life history. In addition, Barosaurus exhibits probable sexual dimorphism in bone histology. Das Verständnis der Biologie der sauropoden Dinosaurier wird durch ihre enorme Körpergröße außerordentlich erschwert. Allerdings kann ein Aspekt, die Lebensgeschichte, anhand der Histologie ihrer Knochen untersucht werden. Zu diesem Zweck wurde die diverse Sauropoden-Vergesellschaftung der oberjurassischen Tendaguru-Schichten beprobt, und zwar mit einer neuartigen Kernbohrmethode, die einen herausragenden Zugang und Einblick in die Knochenhistologie der Sauropoden ermöglichte. Wachstumsserien von Humeri und Femora sowie umfassende Überlieferungen des Wachstums von Individuen anhand einzelner Knochen machen es wahrscheinlich, daß alle vier Sauropoden-Taxa der Tendaguru-Schichten durch ein auch nach der Geschlechtsreife anhaltendes Wachstum gekennzeichnet waren. Allerdings ging das Wachstum nicht bis zum Tode des Tieres weiter, sondern kam bei einer etwas variablen Maximalgröße zum Stillstand. Fibrolamellärer Knochen ist der vorherrschende Knochentyp in den Proben, was anzeigt, daß die Tendaguru-Sauropoden mit für Säugetieren typische Raten wuchsen. Die Tendaguru-Sauropoden kombinerten also ein für Reptilien typisches Muster des Wachstums, nämlich nach der Geschlechtsreife anhaltendes Wachstum, mit für Säuger typischen Raten des Wachstums. Die verschiedenen Sauropoden-Taxa zeigen erstaunliche Unterschiede in den Details ihrer Knochenhistologie, die Unterschiede in der Lebensgeschichte belegen. Bei Barosaurus scheint außerdem ein Geschlechtsdimorphismus in der Histologie der Langknochen vorzukommen. doi:1002/mmng.1999.4860020107


2015 ◽  
Vol 2 (7) ◽  
pp. 140440 ◽  
Author(s):  
Nicole Klein ◽  
James M. Neenan ◽  
Torsten M. Scheyer ◽  
Eva Maria Griebeler

Placodontia is a clade of durophagous, near shore marine reptiles from Triassic sediments of modern-day Europe, Middle East and China. Although much is known about their primary anatomy and palaeoecology, relatively little has been published regarding their life history, i.e. ageing, maturation and growth. Here, growth records derived from long bone histological data of placodont individuals are described and modelled to assess placodont growth and life-history strategies. Growth modelling methods are used to confirm traits documented in the growth record (age at onset of sexual maturity, age when asymptotic length was achieved, age at death, maximum longevity) and also to estimate undocumented traits. Based on these growth models, generalized estimates of these traits are established for each taxon. Overall differences in bone tissue types and resulting growth curves indicate different growth patterns and life-history strategies between different taxa of Placodontia. Psephoderma and Paraplacodus grew with lamellar-zonal bone tissue type and show growth patterns as seen in modern reptiles. Placodontia indet. aff. Cyamodus and some Placodontia indet. show a unique combination of fibrolamellar bone tissue regularly stratified by growth marks, a pattern absent in modern sauropsids. The bone tissue type of Placodontia indet. aff. Cyamodus and Placodontia indet. indicates a significantly increased basal metabolic rate when compared with modern reptiles. Double lines of arrested growth, non-annual rest lines in annuli, and subcycles that stratify zones suggest high dependence of placodont growth on endogenous and exogenous factors. Histological and modelled differences within taxa point to high individual developmental plasticity but sexual dimorphism in growth patterns and the presence of different taxa in the sample cannot be ruled out.


2020 ◽  
Vol 375 (1793) ◽  
pp. 20190142 ◽  
Author(s):  
Adam K. Huttenlocker ◽  
Christen D. Shelton

Varanopids were a group of small to medium-sized synapsids whose fossil record spans the Carboniferous through middle Permian. Although their phylogenetic relationships have received some interest in recent years, little is known about other aspects of their palaeobiology, including their skeletal growth, allometry and habitat preference. Here, we describe varanopid long bone histology based on a sample of well-preserved femora from the lower Permian Richards Spur fissure fill locality, Comanche County, Oklahoma, USA. The sample includes five femora from at least two varanopid taxa— Mycterosaurus and the large varanodontine Varanops brevirostris —and four additional mycterosaurine femora not diagnosed to genus. Prior work on femoral bone compactness provided a baseline to make lifestyle inferences and evaluate whether varanopids were ancestrally terrestrial. Moreover, the large availability of specimens spanning different sizes made possible an assessment of size-related ontogenetic histovariability. All specimens revealed moderately dense cortical bone tissues composed of sparsely vascularized parallel-fibred and lamellar bone with radially arranged rows of longitudinal canals (mostly simple), and many preserved regularly spaced growth marks (annuli and lines of arrested growth) as in modern varanids. We show that bone histology has the potential to explain how ballast was shed and the skeleton lightened for terrestrial mobility in ancestral synapsids and their basal amniote kin, as well as how adjustments in postnatal growth influenced the evolution of larger body sizes in the terrestrial frontier. This article is part of the theme issue ‘Vertebrate palaeophysiology'.


2019 ◽  
Vol 280 (12) ◽  
pp. 1881-1899
Author(s):  
Mohd Shafi Bhat ◽  
Anusuya Chinsamy ◽  
John Parkington

2016 ◽  
Vol 29 (6) ◽  
pp. 715-729 ◽  
Author(s):  
Pavel P. Skutschas ◽  
Elizaveta A. Boitsova ◽  
Alexander O. Averianov ◽  
Hans-Dieter Sues

2014 ◽  
Vol 112 (4) ◽  
pp. 678-687 ◽  
Author(s):  
Nekane Marín-Moratalla ◽  
Jorge Cubo ◽  
Xavier Jordana ◽  
Blanca Moncunill-Solé ◽  
Meike Köhler

Sign in / Sign up

Export Citation Format

Share Document