Bone histology as an approach to providing data on certain key life history traits in mammals: Implications for conservation biology

2013 ◽  
Vol 78 (6) ◽  
pp. 422-429 ◽  
Author(s):  
Nekane Marín-Moratalla ◽  
Xavier Jordana ◽  
Meike Köhler
Author(s):  
Viktoriia KAMSKA ◽  
Edward B. DAESCHLER ◽  
Jason P. DOWNS ◽  
Per E. AHLBERG ◽  
Paul TAFFOREAU ◽  
...  

ABSTRACTHyneria lindae is one of the largest Devonian sarcopterygians. It was found in the Catskill Formation (late Famennian) of Pennsylvania, USA. The current study focuses on the palaeohistology of the humerus of this tristichopterid and supports a low ossification rate and a late ossification onset in the appendicular skeleton. In addition to anatomical features, the large size of the cell lacunae in the cortical bone of the humerus mid-shaft may suggest a large genome size and associated neotenic condition for this species, which could, in turn, be a partial explanation for the large size of H. lindae. The low metabolism of H. lindae revealed here by bone histology supports the hypothesis of an ambush predatory behaviour. Finally, the lines-of-arrested-growth pattern and late ossification of specimen ANSP 21483 suggest that H. lindae probably had a long juvenile stage before reaching sexual maturity. Although very few studies address the life-history traits of stem tetrapods, they all propose a slow limb development for the studied taxa despite different ecological conditions and presumably distinct behaviours. The bone histology of H. lindae would favour the hypothesis that a slow long-bone development could be a general character for stem tetrapods.


2019 ◽  
Vol 235 (2) ◽  
pp. 205-216 ◽  
Author(s):  
Teresa Calderón ◽  
Daniel DeMiguel ◽  
Walter Arnold ◽  
Gabrielle Stalder ◽  
Meike Köhler

2020 ◽  
Vol 650 ◽  
pp. 7-18 ◽  
Author(s):  
HW Fennie ◽  
S Sponaugle ◽  
EA Daly ◽  
RD Brodeur

Predation is a major source of mortality in the early life stages of fishes and a driving force in shaping fish populations. Theoretical, modeling, and laboratory studies have generated hypotheses that larval fish size, age, growth rate, and development rate affect their susceptibility to predation. Empirical data on predator selection in the wild are challenging to obtain, and most selective mortality studies must repeatedly sample populations of survivors to indirectly examine survivorship. While valuable on a population scale, these approaches can obscure selection by particular predators. In May 2018, along the coast of Washington, USA, we simultaneously collected juvenile quillback rockfish Sebastes maliger from both the environment and the stomachs of juvenile coho salmon Oncorhynchus kisutch. We used otolith microstructure analysis to examine whether juvenile coho salmon were age-, size-, and/or growth-selective predators of juvenile quillback rockfish. Our results indicate that juvenile rockfish consumed by salmon were significantly smaller, slower growing at capture, and younger than surviving (unconsumed) juvenile rockfish, providing direct evidence that juvenile coho salmon are selective predators on juvenile quillback rockfish. These differences in early life history traits between consumed and surviving rockfish are related to timing of parturition and the environmental conditions larval rockfish experienced, suggesting that maternal effects may substantially influence survival at this stage. Our results demonstrate that variability in timing of parturition and sea surface temperature leads to tradeoffs in early life history traits between growth in the larval stage and survival when encountering predators in the pelagic juvenile stage.


2020 ◽  
Vol 27 (4) ◽  
pp. 195-200
Author(s):  
Ufuk Bülbül ◽  
Halime Koç ◽  
Yasemin Odabaş ◽  
Ali İhsan Eroğlu ◽  
Muammer Kurnaz ◽  
...  

Age structure of the eastern spadefoot toad, Pelobates syriacus from the Kızılırmak Delta (Turkey) were assessed using phalangeal skeletochronology. Snout-vent length (SVL) ranged from 42.05 to 86.63 mm in males and 34.03 to 53.27 mm in females. Age of adults ranged from 2 to 8 years in males and 3 to 5 years in females. For both sexes, SVL was significantly correlated with age. Males and females of the toads reached maturity at 2 years of age.


Author(s):  
Maren N. Vitousek ◽  
Laura A. Schoenle

Hormones mediate the expression of life history traits—phenotypic traits that contribute to lifetime fitness (i.e., reproductive timing, growth rate, number and size of offspring). The endocrine system shapes phenotype by organizing tissues during developmental periods and by activating changes in behavior, physiology, and morphology in response to varying physical and social environments. Because hormones can simultaneously regulate many traits (hormonal pleiotropy), they are important mediators of life history trade-offs among growth, reproduction, and survival. This chapter reviews the role of hormones in shaping life histories with an emphasis on developmental plasticity and reversible flexibility in endocrine and life history traits. It also discusses the advantages of studying hormone–behavior interactions from an evolutionary perspective. Recent research in evolutionary endocrinology has provided insight into the heritability of endocrine traits, how selection on hormone systems may influence the evolution of life histories, and the role of hormonal pleiotropy in driving or constraining evolution.


2019 ◽  
Vol 144 (4) ◽  
pp. 389-411 ◽  
Author(s):  
Ramsés Djidjou‐Demasse ◽  
Gbenga J. Abiodun ◽  
Abiodun M. Adeola ◽  
Joel O. Botai

Sign in / Sign up

Export Citation Format

Share Document