limb development
Recently Published Documents


TOTAL DOCUMENTS

869
(FIVE YEARS 117)

H-INDEX

69
(FIVE YEARS 6)

BMC Biology ◽  
2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Stephanie Neal ◽  
Kyle J. McCulloch ◽  
Francesca R. Napoli ◽  
Christina M. Daly ◽  
James H. Coleman ◽  
...  

Abstract Background Across the Metazoa, similar genetic programs are found in the development of analogous, independently evolved, morphological features. The functional significance of this reuse and the underlying mechanisms of co-option remain unclear. Cephalopods have evolved a highly acute visual system with a cup-shaped retina and a novel refractive lens in the anterior, important for a number of sophisticated behaviors including predation, mating, and camouflage. Almost nothing is known about the molecular-genetics of lens development in the cephalopod. Results Here we identify the co-option of the canonical bilaterian limb patterning program during cephalopod lens development, a functionally unrelated structure. We show radial expression of transcription factors SP6-9/sp1, Dlx/dll, Pbx/exd, Meis/hth, and a Prdl homolog in the squid Doryteuthis pealeii, similar to expression required in Drosophila limb development. We assess the role of Wnt signaling in the cephalopod lens, a positive regulator in the developing Drosophila limb, and find the regulatory relationship reversed, with ectopic Wnt signaling leading to lens loss. Conclusion This regulatory divergence suggests that duplication of SP6-9 in cephalopods may mediate the co-option of the limb patterning program. Thus, our study suggests that this program could perform a more universal developmental function in radial patterning and highlights how canonical genetic programs are repurposed in novel structures.


Development ◽  
2022 ◽  
Vol 149 (1) ◽  
Author(s):  
Helen L. Zenner

Alberto Roselló-Díez is a Group Leader at the Australian Regenerative Medicine Institute, Monash University. His lab is developing new tools to ask fundamental questions about limb development. We met with Alberto over Teams to discuss his career, his transition to becoming a group leader and his research plans.


Cell ◽  
2022 ◽  
Vol 185 (1) ◽  
pp. 95-112.e18
Author(s):  
Jinxi Li ◽  
James D. Glover ◽  
Haiguo Zhang ◽  
Meifang Peng ◽  
Jingze Tan ◽  
...  
Keyword(s):  

Author(s):  
LUIS FELIPE MILLAN CLARO ◽  
KALENIA MÁRQUEZ FLÓREZ ◽  
CARLOS A. DUQUE-DAZA ◽  
DIEGO A. GARZÓN-ALVARADO

Limb development begins during embryogenesis when a series of biochemical interactions are triggered between a particular region of the mesoderm and the ectoderm. These processes affect the morphogenesis and growth of bones, joints, and all the other constituent elements of limbs; nevertheless, how the biochemical regulation affects mesenchymal condensation is not entirely clear. In this study, a three-dimensional computational model is designed to predict the appearance and location of the mesenchymal condensation in the stylopod and zeugopod; the biochemical events were described with reaction–diffusion equations that were solved using the finite elements method. The result of the gene expression in our model was consistent with the one reported in literature; the obtained patterns of Fgf8, Fgf10, and Wnt3a can predict the shape of the mesenchymal condensation of early upper limb development; the simple diffusive patterns of molecules were suitable to explain the areas where sox9 is expressed. Furthermore, our results suggest that the expression of Tgf-[Formula: see text] in the upper limb could be due to the inhibition of retinoic acid. These results suggest the importance of building computational scenarios where pathologies may be comprehensively examined.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ruiji Guo ◽  
Xia Fang ◽  
Hailei Mao ◽  
Bin Sun ◽  
Jiateng Zhou ◽  
...  

Synpolydactyly (SPD) is a hereditary congenital limb malformation with distinct syndactyly designated as SPD1, SPD2, and SPD3. SPD1 is caused by mutations of HOXD13, which is a homeobox transcription factor crucial for limb development. More than 143 SPD patients have been reported to carry HOXD13 mutations, but there is a lack of genotype–phenotype correlation. We report a novel missense mutation of c. 925A > T (p.I309F) in an individual with atypical synpolydactyly inherited from her father with mild clinodactyly and three other different alanine insertion mutations in HOXD13 identified by whole exome sequencing (WES) in 12 Chinese SPD families. Unlike polyalanine extension, which tends to form α-helix and causes protein aggregation in the cytoplasm as shown by molecular simulation and immunofluorescence, the c. 925A > T mutation impairs downstream transcription of EPHA7. We compiled literature findings and analyzed genotype–phenotype features in 173 SPD individuals of 53 families, including 12 newly identified families. Among the HOXD13-related individuals, mutations were distributed in three regions: polyalanine, homeobox, and non-homeobox. Polyalanine extension was the most common variant (45%), followed by missense mutations (32%) mostly in the homeobox compared with the loss-of-function (LOF) variants more likely in non-homeobox. Furthermore, a more severe degree and classic SPD were associated with polyalanine mutations although missense variants were associated with brachydactyly and syndactyly in hands and feet and LOF variants with clinodactyly in hands. Our study broadens the HOXD13 mutation spectrum and reveals the profile of three different variants and their severity of SPD, the genotype–phenotype correlation related to the HOXD13 mutation site provides clinical insight, including for genetic counseling.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Wellington B. Santos ◽  
Gustavo P. Schettini ◽  
Amanda M. Maiorano ◽  
Fernando O. Bussiman ◽  
Júlio C. C. Balieiro ◽  
...  

Abstract Background The detection of signatures of selection in genomic regions provides insights into the evolutionary process, enabling discoveries regarding complex phenotypic traits. In this research, we focused on identifying genomic regions affected by different selection pressures, mainly highlighting the recent positive selection, as well as understanding the candidate genes and functional pathways associated with the signatures of selection in the Mangalarga Marchador genome. Besides, we seek to direct the discussion about genes and traits of importance in this breed, especially traits related to the type and quality of gait, temperament, conformation, and locomotor system. Results Three different methods were used to search for signals of selection: Tajima’s D (TD), the integrated haplotype score (iHS), and runs of homozygosity (ROH). The samples were composed of males (n = 62) and females (n = 130) that were initially chosen considering well-defined phenotypes for gait: picada (n = 86) and batida (n = 106). All horses were genotyped using a 670 k Axiom® Equine Genotyping Array​ (Axiom MNEC670). In total, 27, 104 (chosen), and 38 candidate genes were observed within the signatures of selection identified in TD, iHS, and ROH analyses, respectively. The genes are acting in essential biological processes. The enrichment analysis highlighted the following functions: anterior/posterior pattern for the set of genes (GLI3, HOXC9, HOXC6, HOXC5, HOXC4, HOXC13, HOXC11, and HOXC10); limb morphogenesis, skeletal system, proximal/distal pattern formation, JUN kinase activity (CCL19 and MAP3K6); and muscle stretch response (MAPK14). Other candidate genes were associated with energy metabolism, bronchodilator response, NADH regeneration, reproduction, keratinization, and the immunological system. Conclusions Our findings revealed evidence of signatures of selection in the MM breed that encompass genes acting on athletic performance, limb development, and energy to muscle activity, with the particular involvement of the HOX family genes. The genome of MM is marked by recent positive selection. However, Tajima’s D and iHS results point also to the presence of balancing selection in specific regions of the genome.


2021 ◽  
Author(s):  
Fang Ye ◽  
Guodong Zhang ◽  
Weigao E ◽  
Haide Chen ◽  
Chengxuan Yu ◽  
...  

Abstract The Mexican axolotl (Ambystoma mexicanum) is a promising tetrapod model for regeneration and developmental studies. Remarkably, neotenic axolotls may undergo metamorphosis, during which their regeneration capacity and lifespan gradually decline. However, a system-level single-cell analysis of molecular characteristics in neotenic and metamorphosed axolotls is still lacking. Here, we developed a single-cell RNA-seq method based on combinatorial hybridization to generate a tissue-based transcriptomic atlas of the adult axolotl. We performed gene expression profiling of over 1 million single cells across 19 tissues to construct the first adult axolotl cell atlas. Comparison of single-cell transcriptomes between the tissues of neotenic and metamorphosed axolotls revealed the heterogeneity of structural cells in different tissues and established their regulatory network. Furthermore, we described dynamic gene expression patterns during limb development in neotenic axolotls. These data serve as a resource to explore the molecular identity of the axolotl as well as its metamorphosis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shalu Jhanwar ◽  
Jonas Malkmus ◽  
Jens Stolte ◽  
Olga Romashkina ◽  
Aimée Zuniga ◽  
...  

AbstractChromatin remodeling and genomic alterations impact spatio-temporal regulation of gene expression, which is central to embryonic development. The analysis of mouse and chicken limb development provides important insights into the morphoregulatory mechanisms, however little is known about the regulatory differences underlying their morphological divergence. Here, we identify the underlying shared and species-specific epigenomic and genomic variations. In mouse forelimb buds, we observe striking synchrony between the temporal dynamics of chromatin accessibility and gene expression, while their divergence in chicken wing buds uncovers species-specific regulatory heterochrony. In silico mapping of transcription factor binding sites and computational footprinting establishes the developmental time-restricted transcription factor-DNA interactions. Finally, the construction of target gene networks for HAND2 and GLI3 transcriptional regulators reveals both conserved and species-specific interactions. Our analysis reveals the impact of genome evolution on the regulatory interactions orchestrating vertebrate limb bud morphogenesis and provides a molecular framework for comparative Evo-Devo studies.


Author(s):  
Immacolata Giordano ◽  
Lucia Pirone ◽  
Veronica Muratore ◽  
Eukene Landaluze ◽  
Coralia Pérez ◽  
...  

Development is orchestrated through a complex interplay of multiple transcription factors. The comprehension of this interplay will help us to understand developmental processes. Here we analyze the relationship between two key transcription factors: CBX4, a member of the Polycomb Repressive Complex 1 (PRC1), and SALL1, a member of the Spalt-like family with important roles in embryogenesis and limb development. Both proteins localize to nuclear bodies and are modified by the small ubiquitin-like modifier (SUMO). Our results show that CBX4 and SALL1 interact in the nucleoplasm and that increased SALL1 expression reduces ubiquitination of CBX4, enhancing its stability. This is accompanied by an increase in the number and size of CBX4-containing Polycomb bodies, and by a greater repression of CBX4 target genes. Thus, our findings uncover a new way of SALL1-mediated regulation of Polycomb bodies through modulation of CBX4 stability, with consequences in the regulation of its target genes, which could have an impact in cell differentiation and development.


2021 ◽  
Author(s):  
Sruthi Purushothaman ◽  
Brianda B. Lopez Aviña ◽  
Ashley W. Seifert

The developing forelimb has been a foundational model to understand how specified progenitor cells integrate genetic information to produce the tetrapod limb bauplan (1, 2). Although the reigning hypothesis is that all tetrapods develop limbs in a similar manner, recent work suggests that urodeles have evolved a derived mode of limb development (3-5). Here we demonstrate through pharmacological and genetic inactivation of Sonic hedgehog (Shh) signaling in axolotls that Shh directs expansion and survival of limb progenitor cells in addition to patterning the limb across the proximodistal and antero-posterior axis. In contrast to inactivation of Shh in mouse or chick embryos where a humerus, radius and single digit develop (6-9), Shh crispant axolotls completely lack forelimbs. In rescuing limb development by implanting SHH-N protein beads into the nascent limb field of Shh-crispants, we show that the limb field is specified in the absence of Shh and that hedgehog pathway activation is required to initiate proximodistal outgrowth. When the derived nature of salamander limb development is placed in a phylogenetic context, it generates a new hypothesis where the ability to regenerate an entire tetrapod limb may have evolved uniquely among urodeles.


Sign in / Sign up

Export Citation Format

Share Document