scholarly journals Phagosomal Rupture by Mycobacterium tuberculosis Results in Toxicity and Host Cell Death

2012 ◽  
Vol 8 (2) ◽  
pp. e1002507 ◽  
Author(s):  
Roxane Simeone ◽  
Alexandre Bobard ◽  
Juliane Lippmann ◽  
Wilbert Bitter ◽  
Laleh Majlessi ◽  
...  
2014 ◽  
Vol 4 (8) ◽  
pp. a022459-a022459 ◽  
Author(s):  
L. Srinivasan ◽  
S. Ahlbrand ◽  
V. Briken

2021 ◽  
Author(s):  
Alex Sigal ◽  
Hylton Rodel ◽  
Isabella Markham Ferreira ◽  
Carly Ziegler ◽  
Yasica Ganga ◽  
...  

Mycobacterium tuberculosis (Mtb) readily aggregates in culture and Mtb aggregates in the lung were observed in experimental Mtb infection. However, the physiological consequences of Mtb aggregation are incompletely understood. Here we examined the human macrophage transcriptional response to aggregated Mtb relative to infection with non-aggregated single or multiple bacilli per host cell. Infection with aggregated Mtb led to an early upregulation of pro-inflammatory associated genes and enhanced TNFα signaling via the NFκB pathway. Both these pathways were significantly upregulated relative to infection with single bacilli, and TNFα signaling was also significantly elevated relative to infection with multiple non-aggregated Mtb. Secretion of TNFα and downstream cytokines were also enhanced. On a longer timescale, aggregate infection led to overall increased acidification per macrophage and a high proportion of death in these cells after aggregate phagocytosis. Host cell death did not occur when Mtb aggregates were heat killed despite such clumps being readily picked up. To validate that Mtb aggregates do occur in the human lung, we document Mtb aggregates surrounding a cavity in a human TB lesion. Aggregates may therefore be present in some lesions and elicit a stronger inflammatory response resulting in recruitment of additional phagocytes and their subsequent death, potentially leading to necrosis and transmission.


2007 ◽  
Vol 75 (6) ◽  
pp. 2894-2902 ◽  
Author(s):  
Ryosuke Uchiyama ◽  
Ikuo Kawamura ◽  
Takao Fujimura ◽  
Michiko Kawanishi ◽  
Kohsuke Tsuchiya ◽  
...  

ABSTRACT In order to know how caspases contribute to the intracellular fate of Mycobacterium tuberculosis and host cell death in the infected macrophages, we examined the effect of benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethane (z-VAD-fmk), a broad-spectrum caspase inhibitor, on the growth of M. tuberculosis H37Rv in RAW 264 cells. In the cells treated with z-VAD-fmk, activation of caspase-8, caspase-3/7, and caspase-9 was clearly suppressed, and DNA fragmentation of the infected cells was also reduced. Under this experimental condition, it was found that the treatment markedly inhibited bacterial growth inside macrophages. The infected cells appeared to undergo cell death of the necrosis type in the presence of z-VAD-fmk. We further found that z-VAD-fmk treatment resulted in the generation of intracellular reactive oxygen species (ROS) in the infected cells. By addition of a scavenger of ROS, the host cell necrosis was inhibited and the intracellular growth of H37Rv was significantly restored. Among inhibitors specific for each caspase, only the caspase-9-specific inhibitor enhanced the generation of ROS and induced necrosis of the infected cells. Furthermore, we found that severe necrosis was induced by infection with H37Rv but not H37Ra in the presence of z-VAD-fmk. Caspase-9 activation was also detected in H37Rv-infected cells, but H37Ra never induced such caspase-9 activation. These results indicated that caspase-9, which was activated by infection with virulent M. tuberculosis, contributed to the inhibition of necrosis of the infected host cells, presumably through suppression of intracellular ROS generation.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ayushi Chaurasiya ◽  
Swati Garg ◽  
Ashish Khanna ◽  
Chintam Narayana ◽  
Ved Prakash Dwivedi ◽  
...  

AbstractHijacking of host metabolic status by a pathogen for its regulated dissemination from the host is prerequisite for the propagation of infection. M. tuberculosis secretes an NAD+-glycohydrolase, TNT, to induce host necroptosis by hydrolyzing Nicotinamide adenine dinucleotide (NAD+). Herein, we expressed TNT in macrophages and erythrocytes; the host cells for M. tuberculosis and the malaria parasite respectively, and found that it reduced the NAD+ levels and thereby induced necroptosis and eryptosis resulting in premature dissemination of pathogen. Targeting TNT in M. tuberculosis or induced eryptosis in malaria parasite interferes with pathogen dissemination and reduction in the propagation of infection. Building upon our discovery that inhibition of pathogen-mediated host NAD+ modulation is a way forward for regulation of infection, we synthesized and screened some novel compounds that showed inhibition of NAD+-glycohydrolase activity and pathogen infection in the nanomolar range. Overall this study highlights the fundamental importance of pathogen-mediated modulation of host NAD+ homeostasis for its infection propagation and novel inhibitors as leads for host-targeted therapeutics.


Sign in / Sign up

Export Citation Format

Share Document