scholarly journals Optimization of the virtual mouse HeadMouse to foster its classroom use by children with physical disabilities

Author(s):  
Merce Teixido ◽  
Tomás Palleja ◽  
Marcel Tresanchez ◽  
Davinia Font ◽  
Javier Moreno ◽  
...  

This paper presents the optimization of a virtual mouse called HeadMouse in order to foster its classroom use by children with physical disabilities. HeadMouse is an absolute virtual mouse that converts head movements in cursor displacement and facial gestures in click actions. The virtual mouse combines different image processing algorithms: face detection, pattern matching and optical flow in order to emulate the behaviour of a conventional computer mouse. The original implementation of HeadMouse requires large computational power and this paper proposes specific optimizations in order to enable its use by children with disabilities in standard low cost classroom computers.

Author(s):  
Christian Cierpka ◽  
Sebastian Sachs ◽  
Patrick Mäder ◽  
Minqian Chen ◽  
Rune Barnkob ◽  
...  

Defocus methods have become more and more popular for the estimation of the 3D position of particles in flows (Cierpka and Kahler, 2011; Rossi and K ¨ ahler, 2014). Typically the depth positions of particles are ¨ determined by the defocused particle images using image processing algorithms. As these methods allow the determination of all components of the velocity vector in a volume using only a single optical access and a single camera, they are often used in, but not limited to microfluidics. Since almost no additional equipment is necessary they are low-cost methods that are meanwhile widely applied in different fields. To overcome the ambiguity of perfect optical systems, often a cylindrical lens is introduced in the optical system which enhances the differences of the obtained particle images for different depth positions. However, various methods are emerging and it is difficult for non-experienced users to judge what method might be best suited for a given experimental setup. Therefore, the aim of the presentation is a thorough evaluation of the performance of general advanced methods, including also recently presented neural networks (Franchini and Krevor, 2020; Konig et al., 2020) based on typical images.


Author(s):  
César D. Fermin ◽  
Dale Martin

Otoconia of higher vertebrates are interesting biological crystals that display the diffraction patterns of perfect crystals (e.g., calcite for birds and mammal) when intact, but fail to produce a regular crystallographic pattern when fixed. Image processing of the fixed crystal matrix, which resembles the organic templates of teeth and bone, failed to clarify a paradox of biomineralization described by Mann. Recently, we suggested that inner ear otoconia crystals contain growth plates that run in different directions, and that the arrangement of the plates may contribute to the turning angles seen at the hexagonal faces of the crystals.Using image processing algorithms described earlier, and Fourier Transform function (2FFT) of BioScan Optimas®, we evaluated the patterns in the packing of the otoconia fibrils of newly hatched chicks (Gallus domesticus) inner ears. Animals were fixed in situ by perfusion of 1% phosphotungstic acid (PTA) at room temperature through the left ventricle, after intraperitoneal Nembutal (35mg/Kg) deep anesthesia. Negatives were made with a Hitachi H-7100 TEM at 50K-400K magnifications. The negatives were then placed on a light box, where images were filtered and transferred to a 35 mm camera as described.


Fast track article for IS&T International Symposium on Electronic Imaging 2020: Image Processing: Algorithms and Systems proceedings.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 457
Author(s):  
Manuel Henriques ◽  
Duarte Valério ◽  
Paulo Gordo ◽  
Rui Melicio

Many image processing algorithms make use of derivatives. In such cases, fractional derivatives allow an extra degree of freedom, which can be used to obtain better results in applications such as edge detection. Published literature concentrates on grey-scale images; in this paper, algorithms of six fractional detectors for colour images are implemented, and their performance is illustrated. The algorithms are: Canny, Sobel, Roberts, Laplacian of Gaussian, CRONE, and fractional derivative.


Sign in / Sign up

Export Citation Format

Share Document