scholarly journals On the uncertainty of defocus methods for 3D particle tracking velocimetry

Author(s):  
Christian Cierpka ◽  
Sebastian Sachs ◽  
Patrick Mäder ◽  
Minqian Chen ◽  
Rune Barnkob ◽  
...  

Defocus methods have become more and more popular for the estimation of the 3D position of particles in flows (Cierpka and Kahler, 2011; Rossi and K ¨ ahler, 2014). Typically the depth positions of particles are ¨ determined by the defocused particle images using image processing algorithms. As these methods allow the determination of all components of the velocity vector in a volume using only a single optical access and a single camera, they are often used in, but not limited to microfluidics. Since almost no additional equipment is necessary they are low-cost methods that are meanwhile widely applied in different fields. To overcome the ambiguity of perfect optical systems, often a cylindrical lens is introduced in the optical system which enhances the differences of the obtained particle images for different depth positions. However, various methods are emerging and it is difficult for non-experienced users to judge what method might be best suited for a given experimental setup. Therefore, the aim of the presentation is a thorough evaluation of the performance of general advanced methods, including also recently presented neural networks (Franchini and Krevor, 2020; Konig et al., 2020) based on typical images.

1996 ◽  
Vol 118 (2) ◽  
pp. 352-357 ◽  
Author(s):  
Satoru Ushijima ◽  
Nobukazu Tanaka

This paper describes three-dimensional particle tracking velocimetry (3D PTV), which enables us to obtain remarkably larger number of velocity vectors than previous techniques. Instead of the usual stereoscopic image recordings, the present 3D PTV visualizes an entire three-dimensional flow with the scanning laser-light sheets generated from a pair of optical scanners and the images are taken by a high-speed video system synchronized with the scannings. The digital image analyses to derive velocity components are based on the numerical procedure (Ushijima and Tanaka, 1994), in which several improvements have been made on the extraction of particle images, the determination of their positions, the derivation of velocity components and others. The present 3D PTV was applied to the rotating fluids, accompanied by Ekman boundary layers, and their complicated secondary flow patterns, as well as the primary circulations, are quantitatively captured.


Author(s):  
Merce Teixido ◽  
Tomás Palleja ◽  
Marcel Tresanchez ◽  
Davinia Font ◽  
Javier Moreno ◽  
...  

This paper presents the optimization of a virtual mouse called HeadMouse in order to foster its classroom use by children with physical disabilities. HeadMouse is an absolute virtual mouse that converts head movements in cursor displacement and facial gestures in click actions. The virtual mouse combines different image processing algorithms: face detection, pattern matching and optical flow in order to emulate the behaviour of a conventional computer mouse. The original implementation of HeadMouse requires large computational power and this paper proposes specific optimizations in order to enable its use by children with disabilities in standard low cost classroom computers.


Author(s):  
Massimiliano Rossi

Tracking the 3D position of tracer particles or small objects like cells or unicellular organisms in miniaturized lab-on-a-chip or biomedical devices is complicated since it is often not possible in these setups to use multi-camera approaches. Most successful single-camera approaches for these applications are based on holography or defocusing. Holographic methods have been used to track complex objects such has bacteria (Bianchi et al. (2019)) and even to estimate their orientation (Wang et al. (2016)). However, these methods require a complex and expensive experimental setup which is not always available in research laboratories. On the other hand, defocusing methods work with conventional microscopic optics, are easy to implement, and have shown excellent results in 3D PTV experiments (Qiu et al. (2019)). One main drawback is that they normally work only with spherical and mono-dispersed tracer particles. A defocusing method that has potential to measure non-spherical particles is the General Defocusing Particle Tracking (Barnkob and Rossi (2020)) which is based on pattern recognition and can be conceptually extended to more complex tasks by extending the reference library of particle images, including not only spherical particles at different depth positions, but also non-spherical particles at different orientations. However, whether this approach could work in practice is still unknown. First, is the information contained in simple defocused images sufficient to reconstruct depth and orientation of non-spherical particles, and eventually under which circumstances? Second, how to practically collect the labelled reference images?


1966 ◽  
Vol 25 ◽  
pp. 93-97
Author(s):  
Richard Woolley

It is now possible to determine proper motions of high-velocity objects in such a way as to obtain with some accuracy the velocity vector relevant to the Sun. If a potential field of the Galaxy is assumed, one can compute an actual orbit. A determination of the velocity of the globular clusterωCentauri has recently been completed at Greenwich, and it is found that the orbit is strongly retrograde in the Galaxy. Similar calculations may be made, though with less certainty, in the case of RR Lyrae variable stars.


Author(s):  
César D. Fermin ◽  
Dale Martin

Otoconia of higher vertebrates are interesting biological crystals that display the diffraction patterns of perfect crystals (e.g., calcite for birds and mammal) when intact, but fail to produce a regular crystallographic pattern when fixed. Image processing of the fixed crystal matrix, which resembles the organic templates of teeth and bone, failed to clarify a paradox of biomineralization described by Mann. Recently, we suggested that inner ear otoconia crystals contain growth plates that run in different directions, and that the arrangement of the plates may contribute to the turning angles seen at the hexagonal faces of the crystals.Using image processing algorithms described earlier, and Fourier Transform function (2FFT) of BioScan Optimas®, we evaluated the patterns in the packing of the otoconia fibrils of newly hatched chicks (Gallus domesticus) inner ears. Animals were fixed in situ by perfusion of 1% phosphotungstic acid (PTA) at room temperature through the left ventricle, after intraperitoneal Nembutal (35mg/Kg) deep anesthesia. Negatives were made with a Hitachi H-7100 TEM at 50K-400K magnifications. The negatives were then placed on a light box, where images were filtered and transferred to a 35 mm camera as described.


Fast track article for IS&T International Symposium on Electronic Imaging 2020: Image Processing: Algorithms and Systems proceedings.


Sign in / Sign up

Export Citation Format

Share Document