scholarly journals Continuous solutions to a viral infection model with general incidence rate, discrete state-dependent delay, CTL and antibody immune responses

Author(s):  
Alexander Rezounenko
2015 ◽  
Vol 09 (01) ◽  
pp. 1650007 ◽  
Author(s):  
Jinliang Wang ◽  
Xinxin Tian ◽  
Xia Wang

In this paper, the sharp threshold properties of a (2n + 1)-dimensional delayed viral infection model are investigated. This model combines with n classes of uninfected target cells, n classes of infected cells and nonlinear incidence rate h(x, v). Two kinds of distributed time delays are incorporated into the model to describe the time needed for infection of uninfected target cells and virus replication. Under certain conditions, it is shown that the basic reproduction number is a threshold parameter for the existence of the equilibria, uniform persistence, as well as for global stability of the equilibria of the model.


2018 ◽  
Vol 16 (1) ◽  
pp. 1374-1389
Author(s):  
Eric Ávila-Vales ◽  
Abraham Canul-Pech ◽  
Erika Rivero-Esquivel

AbstractIn this paper, we discussed a infinitely distributed delayed viral infection model with nonlinear immune response and general incidence rate. We proved the existence and uniqueness of the equilibria. By using the Lyapunov functional and LaSalle invariance principle, we obtained the conditions of global stabilities of the infection-free equilibrium, the immune-exhausted equilibrium and the endemic equilibrium. Numerical simulations are given to verify the analytical results.


Sign in / Sign up

Export Citation Format

Share Document