scholarly journals Stability Analysis in a Mutualism System with Linear, Holling Type-II and Functional Response

Author(s):  
Solomon T ◽  
Phani Kumar N ◽  
K.V.L.N. Acharyulu ◽  
Boka Kumsa ◽  
Vishwa Prasad Rao S
Author(s):  
Apima B. Samuel ◽  
Lawi O. George ◽  
Nthiiri J. Kagendo

Predator-prey models describe the interaction between two species, the prey which serves as a food source to the predator. The migration of the prey for safety reasons after a predator attack and the predator in search of food, from a patch to another may not be instantaneous. In this paper, a Rosenzweig-MacAurther model with a Holling-type II predator functional response and time delay in the migration of both species is developed and analysed. Stability analysis of the system shows that depending on the prey growth and prey migration rates either both species go to extinction or co-exist. Numerical simulations show that a longer delay in the migration of the species leads makes the model to stabilize at a slower rate compared to when the delay is shorter. Relevant agencies likethe Kenya Wildlife Service should address factors that slow down migration of species, for example, destruction of natural habitats for human settlement and activities, which may cause delay in migration.


2021 ◽  
Author(s):  
Chongming Li

The dynamical behaviours of the predators and prey can be described by studying the local stability of the planar systems. Type I functional response shows that the rate of consumption per predator is proportional to prey’s density while type II functional response is related to the situation that predators would reach satiation as they consumed sufficient amount of prey. We seek out a method of using transformation to reduce the number of parameters of original models and then study the stability analysis of equilibrium points. Under suitable restrictions on the new parameters, we prove that the positive interior equilibrium is a stable node for the system of type I and type II functional responses. Moreover, in the case of type II functional response, the boundary equilibria can have more types of stability other than saddle points.


2021 ◽  
Author(s):  
Chongming Li

The dynamical behaviours of the predators and prey can be described by studying the local stability of the planar systems. Type I functional response shows that the rate of consumption per predator is proportional to prey’s density while type II functional response is related to the situation that predators would reach satiation as they consumed sufficient amount of prey. We seek out a method of using transformation to reduce the number of parameters of original models and then study the stability analysis of equilibrium points. Under suitable restrictions on the new parameters, we prove that the positive interior equilibrium is a stable node for the system of type I and type II functional responses. Moreover, in the case of type II functional response, the boundary equilibria can have more types of stability other than saddle points.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Dipankar Ghosh ◽  
Prasun K. Santra ◽  
Abdelalim A. Elsadany ◽  
Ghanshaym S. Mahapatra

Abstract This paper focusses on developing two species, where only prey species suffers by a contagious disease. We consider the logistic growth rate of the prey population. The interaction between susceptible prey and infected prey with predator is presumed to be ruled by Holling type II and I functional response, respectively. A healthy prey is infected when it comes in direct contact with infected prey, and we also assume that predator-dependent disease spreads within the system. This research reveals that the transmission of this predator-dependent disease can have critical repercussions for the shaping of prey–predator interactions. The solution of the model is examined in relation to survival, uniqueness and boundedness. The positivity, feasibility and the stability conditions of the fixed points of the system are analysed by applying the linearization method and the Jacobian matrix method.


2016 ◽  
Vol 75 (s1) ◽  
Author(s):  
Alma R. Núñez-Ortiz ◽  
Sarma Nandini ◽  
S.S.S. Nandini

<p>Freshwater turbellarians, despite their mainly benthic habits, interact with pelagic communities of rotifers and cladocerans. However, very little is known about their demographic characteristics, food preference and functional response. To fill that gap we studied one of the most widely spread species, <em>Stenostomum leucops</em>.  We conducted population growth experiments using abundant food (several rotifer and cladocerans species). To evaluate possible impact of <em>S. leucops</em> on planktonic communities, we conducted prey preference experiments at two temperatures: 18 and 23°C. The number of rotifers and cladocerans consumed was calculated by the difference between the initial and final density. We found that diets supplemented with fresh algae achieved higher <em>S. leucops</em> densities than those with detritus supplements in their diets. In the case of animal diets, <em>Euchlanis dilatata</em> allowed <em>S. leucops</em> reach higher densities than the other zooplankton species; <em>E. dilatata</em> was positively selected for in the selectivity study at both 18 and 23°C.  <em>Stenostomum leucops</em> showed a type II functional response on rotifers and the cladoceran <em>Alona glabra</em>. Our results suggest that <em>S. leucops</em> select their prey according to their vulnerability using different mechanisms, which optimize their food intake.</p>


Sign in / Sign up

Export Citation Format

Share Document