scholarly journals Combining a Virtual Learning Tool and Onsite Study Visits of Four Conservation Sites in Europe

2011 ◽  
Vol 6 ◽  
pp. 157-169 ◽  
Author(s):  
A. Chenaux ◽  
M. Murphy ◽  
G. Keenaghan ◽  
J. Jenkins ◽  
E. McGovern ◽  
...  

The design and evaluation of virtual learning environments for construction and surveying students is presented in this paper; by combining virtual learning environment and on-site student surveys to model and replicate practice in the architectural heritage sector. The Virtual Learning Environment is enhanced with real live survey projects whereby students collect the data to build virtual historic buildings from onsite surveys using advanced survey equipment. The survey data is modelled in HBIM; Historic Building Information Modelling (HBIM) is currently being developed as a virtual learning tool for construction and surveying students in the Dublin Institute of Technology.  HBIM, is a novel solution whereby interactive parametric objects representing architectural elements are constructed from historic data, these elements, including detail behind the scan surface are accurately mapped onto a laser or image based survey. The architectural elements are scripted using a Geometric Descriptive Language GDL. In the case of this project a Virtual Learning Environment is being developed which combines advanced recording and surveying with Building Information Modelling (BIM) to simulate and analyse existing buildings.

2016 ◽  
Vol 5 (2) ◽  
pp. 39-54 ◽  
Author(s):  
Mark Kelly ◽  
Mark Costello ◽  
Gerard Nicholson ◽  
Jim O'Connor

Building Information Modelling (BIM) refers to a new collaborative way of working, which places a digital model at the epicentre of the construction process to inform decisions during the entire lifecycle of a project. In the UK, BIM Level 2 is now a mandatory requirement for all centrally-procured government projects. This is not the case in Ireland but there is evidence that clients are driving this transition via the inclusion of Employer Information Requirements in design-phase tender documentation. This move towards BIM Level 2 poses a number of challenges as it marks a significant shift from the way a project has been traditionally procured, designed, constructed and operated. In this challenge lies an opportunity for the higher education sector to respond by developing appropriate learning opportunities, both for students and industry stakeholders. This paper will chart how a close collaboration between the Galway-Mayo Institute of Technology (GMIT) and the RPS Group facilitated the development of a flexible higher education programme in BIM.


Author(s):  
Conor Dore ◽  
Maurice Murphy

Historic Building Information Modelling (HBIM) is a new approach for modelling historic buildings which develops full Building Information Models (BIMs) from remotely sensed data. HBIM consists of a novel library of reusable parametric objects, based on historic architectural data and a system for mapping theses library objects to survey data. This chapter describes the development of a library of parametric objects for HBIM that can be used to model classical architectural elements. Steps towards automating the HBIM process are also described in this chapter. Using concepts from procedural modelling, a new set of rules and algorithms have been developed to automatically combine HBIM library objects and generate different building arrangements by altering parameters. This is a semi-automatic process where the required building structure and objects are first automatically generated and then refined to match survey data. The use of procedural modelling techniques with HBIM library objects introduces automation and speeds up the slow process of plotting library objects to survey data.


2019 ◽  
pp. 49-92
Author(s):  
Conor Dore ◽  
Maurice Murphy

Historic Building Information Modelling (HBIM) is a new approach for modelling historic buildings which develops full Building Information Models (BIMs) from remotely sensed data. HBIM consists of a novel library of reusable parametric objects, based on historic architectural data and a system for mapping theses library objects to survey data. This chapter describes the development of a library of parametric objects for HBIM that can be used to model classical architectural elements. Steps towards automating the HBIM process are also described in this chapter. Using concepts from procedural modelling, a new set of rules and algorithms have been developed to automatically combine HBIM library objects and generate different building arrangements by altering parameters. This is a semi-automatic process where the required building structure and objects are first automatically generated and then refined to match survey data. The use of procedural modelling techniques with HBIM library objects introduces automation and speeds up the slow process of plotting library objects to survey data.


Author(s):  
A. Baik ◽  
A. Alitany ◽  
J. Boehm ◽  
S. Robson

The theory of using Building Information Modelling "BIM" has been used in several Heritage places in the worldwide, in the case of conserving, documenting, managing, and creating full engineering drawings and information. However, one of the most serious issues that facing many experts in order to use the Historical Building Information Modelling "HBIM", is creating the complicated architectural elements of these Historical buildings. In fact, many of these outstanding architectural elements have been designed and created in the site to fit the exact location. Similarly, this issue has been faced the experts in Old Jeddah in order to use the BIM method for Old Jeddah historical Building. Moreover, The Saudi Arabian City has a long history as it contains large number of historic houses and buildings that were built since the 16th century. Furthermore, the BIM model of the historical building in Old Jeddah always take a lot of time, due to the unique of Hijazi architectural elements and no such elements library, which have been took a lot of time to be modelled. This paper will focus on building the Hijazi architectural elements library based on laser scanner and image survey data. This solution will reduce the time to complete the HBIM model and offering in depth and rich digital architectural elements library to be used in any heritage projects in Al-Balad district, Jeddah City.


2020 ◽  
Vol 8 (1) ◽  
pp. 4-17
Author(s):  
Nor Akmal Mohamad ◽  
Madihah Khalid

Building information modelling (BIM) is one of the new technologies being used in architectural and constructions projects. At present, BIM curricula are being taught in many Malaysian higher learning institutions, including at the certificate level in community colleges. Even though many studies have investigated behavioural intention to adopt BIM in the industrial setting, studies on the intention to use BIM among students during their training or learning have not received the same level of attention. This study, therefore, investigated the extent to which community college students are willing to accept and use BIM. Factors that influenced their behavioural intention to use BIM, as well as the relationship between the factors and intention to use were also examined. The Technology Acceptance Model (TAM) was used as the theoretical framework to guide the research, where students’ behavioural intention to use BIM was explained through their perceptions of its usefulness and ease of use, as well as their attitude towards BIM utilization in the classroom. A total of 144 community college students enrolled in the architecture programmes in Malaysia were selected as the sample using convenience sampling. The findings show that the students’ behavioural intention to adopt BIM is high. They also perceive BIM as useful and easy to use, and their attitude towards BIM usage appears to be positive. The regression model produced an adjusted R-squared value of 0.790 indicating that 79% of the total variance in the students’ intention to use BIM can be explained by the three independent variables, i.e., perceived usefulness, ease of use, and attitude. Keywords: Building information modelling, perceived usefulness, perceived ease of use, attitude, intention to use, behavioural intention, Technology Acceptance Model


Sign in / Sign up

Export Citation Format

Share Document