Syntheses, structures and properties of novel oligo(azomethine ether)s containing or not chlorine atoms in the main chain

Polimery ◽  
2009 ◽  
Vol 54 (04) ◽  
pp. 266-274 ◽  
Author(s):  
ISMET KAYA ◽  
SULEYMAN CULHAOGLU
2011 ◽  
Vol 335-336 ◽  
pp. 891-894
Author(s):  
Shuan Li Du ◽  
Jian Feng Gao ◽  
Zhong Zhan Sun ◽  
Jing Yu Wang

1,4-butylene bi-p-hydroxybenzoate (BBHB) was synthesized using methyl p-hydroxyl- benzoate and 1,4-butanediol under catalyst and stabilizer conditions; Then, the thermotropic main- chain liquid crystalline polysiloxanes (MCLCPs) with flexible spacer, were synthesized using BBHB and dimethyldiethoxysilane reagents by melting polycondensation. The chemical structures and properties were characterized by FT-IR, polarized optical microscopy (POM) and differential scanning calorimeter (DSC) respectively. It was found that MCLCPs was the type of smectic A liquid crystal, and the liquid crystal temperature ranged from 58°C to 143°C, i.e. its variationrange reached 85°C. In addition, the polysiloxane was used as the flexible main-chain and the flexible chains CH2 was embedded into the rigid structural blocks of liquid crystalline polymers, which not only decreased the melting point below the thermal decomposition temperature, but also made the clearing point and a stable liquid crystal state observed.


2015 ◽  
Vol 53 (3) ◽  
pp. 198-205
Author(s):  
Bong-Ki Ryu ◽  
Su-Yeon Choi ◽  
Young-Seok Kim ◽  
Jong-Hwan Kim ◽  
Jae-Yeop Jung ◽  
...  

Author(s):  
Austin M. Evans ◽  
Lucas R. Parent ◽  
Nathan C. Flanders ◽  
Ryan P. Bisbey ◽  
Edon Vitaku ◽  
...  

<div> <div> <div> <p>Polymerizing monomers into periodic two-dimensional (2D) networks provides structurally precise, atomically thin macromolecular sheets linked by robust, covalent bonds. These materials exhibit desirable mechanical, optoelectrotronic, and molecular transport properties derived from their designed structure and permanent porosity. 2D covalent organic frameworks (COFs) offer broad monomer scope, but are generally isolated as polycrystalline, insoluble powders with limited processability. Here we overcome this limitation by controlling 2D COF formation using a two- step procedure. In the first step, 2D COF nanoparticle seeds are prepared with approximate diameters of 30 nm. Next, monomers are slowly added to suppress new nucleation while promoting epitaxial growth on the existing seeds to sizes of several microns. The resulting COF nanoparticles are of exceptional and unprecedented quality, isolated as single crystalline materials with micron-scale domain sizes. These findings advance the controlled synthesis of 2D layered COFs and will enable a broad exploration of synthetic 2D polymer structures and properties. </p> </div> </div> </div>


2017 ◽  
Author(s):  
Austin M. Evans ◽  
Lucas R. Parent ◽  
Nathan C. Flanders ◽  
Ryan P. Bisbey ◽  
Edon Vitaku ◽  
...  

<div> <div> <div> <p>Polymerizing monomers into periodic two-dimensional (2D) networks provides structurally precise, atomically thin macromolecular sheets linked by robust, covalent bonds. These materials exhibit desirable mechanical, optoelectrotronic, and molecular transport properties derived from their designed structure and permanent porosity. 2D covalent organic frameworks (COFs) offer broad monomer scope, but are generally isolated as polycrystalline, insoluble powders with limited processability. Here we overcome this limitation by controlling 2D COF formation using a two- step procedure. In the first step, 2D COF nanoparticle seeds are prepared with approximate diameters of 30 nm. Next, monomers are slowly added to suppress new nucleation while promoting epitaxial growth on the existing seeds to sizes of several microns. The resulting COF nanoparticles are of exceptional and unprecedented quality, isolated as single crystalline materials with micron-scale domain sizes. These findings advance the controlled synthesis of 2D layered COFs and will enable a broad exploration of synthetic 2D polymer structures and properties. </p> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document