decomposition temperature
Recently Published Documents


TOTAL DOCUMENTS

958
(FIVE YEARS 329)

H-INDEX

28
(FIVE YEARS 6)

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 548
Author(s):  
Gabriela V. T. Kurban ◽  
Artur S. C. Rego ◽  
Nathalli M. Mello ◽  
Eduardo A. Brocchi ◽  
Rogério C. S. Navarro ◽  
...  

The sulfur–iodine thermochemical water-splitting cycle is a promising route proposed for hydrogen production. The decomposition temperature remains a challenge in the process. Catalysts, such as Pd supported on Al2O3, are being considered to decrease reaction temperatures. However, little is known regarding the kinetic behavior of such systems. In this work, zinc sulfate thermal decomposition was studied through non-isothermal thermogravimetric analysis to understand the effect of a catalyst within the sulfur–iodine reaction system context. The findings of this analysis were also related to a thermodynamic assessment. It was observed that the presence of Pd/Al2O3 modified the reaction mechanism, possibly with some intermediate reactions that were suppressed or remarkably accelerated. The proposed model suggests that zinc sulfate transformation occurred in two sequential stages without the Pd-based material. Activation energy values of 238 and 368 kJ.mol−1 were calculated. In the presence of Pd/Al2O3, an activation energy value of 204 kJ.mol−1 was calculated, which is lower than observed previously.


Micro ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 23-53
Author(s):  
Fabrizio Roccaforte ◽  
Filippo Giannazzo ◽  
Giuseppe Greco

Wide band gap semiconductors such as silicon carbide (SiC) and gallium nitride (GaN) are excellent materials for the next generation of high-power and high-frequency electronic devices. In fact, their wide band gap (>3 eV) and high critical electric field (>2 MV/cm) enable superior performances to be obtained with respect to the traditional silicon devices. Hence, today, a variety of diodes and transistors based on SiC and GaN are already available in the market. For the fabrication of these electronic devices, selective doping is required to create either n-type or p-type regions with different functionalities and at different doping levels (typically in the range 1016–1020 cm−3). In this context, due to the low diffusion coefficient of the typical dopant species in SiC, and to the relatively low decomposition temperature of GaN (about 900 °C), ion implantation is the only practical way to achieve selective doping in these materials. In this paper, the main issues related to ion implantation doping technology for SiC and GaN electronic devices are briefly reviewed. In particular, some specific literature case studies are illustrated to describe the impact of the ion implantation doping conditions (annealing temperature, electrical activation and doping profiles, surface morphology, creation of interface states, etc.) on the electrical parameters of power devices. Similarities and differences in the application of ion implantation doping technology in the two materials are highlighted in this paper.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 245
Author(s):  
Yong Sun ◽  
Yongli Peng ◽  
Yajiao Zhang

In this work, a flame retardant curing agent (DOPO-MAC) composed of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide DOPO and methyl acrylamide (MAC) was synthesized successfully, and the structure of the compound was characterized by FT-IR and 1H-NMR. The non-isothermal kinetics of the epoxy resin/DOPO-MAC system with 1% phosphorus was studied by non-isothermal DSC method. The activation energy of the reaction (Ea), about 46 kJ/mol, was calculated by Kissinger and Ozawa method, indicating that the curing reaction was easy to carry out. The flame retardancy of the epoxy resin system was analyzed by vertical combustion test (UL94) and limiting oxygen index (LOI) test. The results showed that epoxy resin (EP) with 1% phosphorus successfully passed a UL-94 V-0 rating, and the LOI value increased along with the increasing of phosphorus content. It confirmed that DOPO-MAC possessed excellent flame retardance and higher curing reactivity. Moreover, the thermal stability of EP materials was also investigated by TGA. With the DOPO-MAC added, the residual mass of EP materials increased remarkably although the initial decomposition temperature decreased slightly.


Gels ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 29
Author(s):  
Jie Liu ◽  
Qiuye Yang ◽  
Tiantian Yuan ◽  
Yawei Liu ◽  
Guihong Fang

Resistant starch (RS) type 2-high-amylose corn starch (HACS) was subjected to simultaneous hydrothermal (25% moisture content, 90 °C for 12 h) and microwave (35% moisture content, 40 W/g microwaving for 4 min) treatment and zein (at a zein to treated starch ratio of 1:5, 50 °C for 1 h) to improve its resistance to enzymolysis. Scanning electron microscopy (SEM) highlighted the aggregation and adhesion of the composite. The average particle size of the composite (27.65 μm) was exceeded that of both the HACS (12.52 μm) and the hydrothermal and microwave treated HACS (hydro-micro-HACS) (12.68 μm). The X-ray diffraction results revealed that the hydro-micro-HACS and composite remained B-type, while their crystallinity significantly decreased to 16.98% and 12.11%, respectively. The viscosity of the hydro-micro-HACS and composite at 50 °C was 25.41% and 35.36% lower than that of HACS. The differential scanning calorimetry (DSC) results demonstrated that the composite displayed a new endothermic peak at 95.79 °C, while the weight loss rate and decomposition temperature were 7.61% and 2.39% lower than HACS, respectively. The RS content in HACS, the hydro-micro-HACS, and composite was 47.12%, 57.28%, and 62.74%, respectively. In conclusion, hydrothermal and microwave treatment combined with zein provide an efficient physical strategy to enhance the RS type 2-HACS.


2022 ◽  
Vol 2160 (1) ◽  
pp. 012031
Author(s):  
Xiangdong Zhu ◽  
Yijun Chen ◽  
Chongguang Zang

Abstract In this study, to improve the flame retardancy properties of polypropylene, DBDPE/Sb2O3 and DBDPE/HBCD/Sb2O3 flame retardant systems were used for flame retardant PP, and a halogen-free flame retardant PP material was prepared using the one-component intumescent flame retardant PNP1D. Tensile tests, impact tests, ultimate oxygen index, UL94V-0 vertical combustion, thermogravimetric analysis, rheological analysis and scanning electron microscopy were used to study the flame retardant properties and mechanical properties of the flame retardant PP. The test results show that both the ultimate oxygen index of DBDPE/Sb2O3 compounded flame retardant PP and the ultimate oxygen index of PNP1D flame retardant PP are nearly double that of pure PP, passing the UL-94V-0 flame retardant standard. The thermal decomposition temperature range of DBDPE/Sb2O3 compounded system and the thermal decomposition temperature range of PNP1D flame retardant PP both completely cover the thermal decomposition temperature range of both the DBDPE/Sb2O3 compound system and PNP1D flame retardant PP completely covered the thermal decomposition temperature range of pure PP. The tensile and impact strength of the DBDPE/Sb2O3 flame retardant system with 10% SK-80 is 50% higher than that of the DBDPE/Sb2O3 flame retardant system without SK-80. The modified PP with 25% PNP1D is nearly 1 time higher than pure PP in terms of carbon formation and has an ideal flame retardant effect.


Author(s):  
Yuvaraja Dibdalli ◽  
José Gaete ◽  
Claudio Osorio-Gutierrez ◽  
Juan Luis Arroyo ◽  
Angel Norambuena ◽  
...  

We report the catalytic effect of three ruthenocene bimetallic compounds derived from fused aromatic rings of general formula [{Cp*Ru}2L], with Cp*: pentamethylcyclopentadiene and L = pentalene (1), 2,6-diethyl-4,8-dimethyl-s-indacene (2), and 2,7-diethyl-as-indacene (3), on the thermal decomposition of ammonium perchlorate (AP). The new compound 3 was characterized by a combination of multinuclear magnetic resonance (NMR) spectroscopy and elemental analysis. The differential scanning calorimetry (DSC) analysis of compound 3 shows a decrease in the decomposition temperature of AP to 347 ºC, increases the energy release to 2048 J g-1 and, consequently, leads to the lowest activation energy (42.9 kJ mol−1). These results are comparable to the typically used metallocene (catocene: 347 ºC and 2472 J g-1), suggesting a suitable and competitive alternative to be used as a modifier for composite solid propellants.


2022 ◽  
Author(s):  
Zhe Shi ◽  
Taojie Lu ◽  
Jian Zhang ◽  
Zhaoyang Zhu ◽  
Yidong Xu ◽  
...  

Alpha-aluminum hydride (α-AlH3) is an excellent high-energy additive for solid propellants because of its high hydrogen content (10.8 wt%) and energy density, low decomposition temperature, and good combustion performance. However,...


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 270
Author(s):  
Adam Dębski ◽  
Sylwia Terlicka ◽  
Anna Sypien ◽  
Władysław Gąsior ◽  
Magda Pęska ◽  
...  

In this paper, the hydrogen sorption properties of casted Ag-Mg alloys were investigated. The obtained alloys were structurally analyzed by X-ray diffraction (XRD) and observed by scanning electron microscopy (SEM). The study was carried out for four alloys from the two-phase region (Mg) + γ′ (AgMg4) with nominal concentrations of 5 wt. %, 10 wt. %, 15 wt. %, and 20 wt. % Ag, four alloys with nominal compositions equivalent to intermetallic phases: AgMg4, AgMg3, AgMg, and Ag3Mg, one alloy from the two-phase region AgMg + Ag3Mg (Ag60Mg40), and one alloy from the two-phase region AgMg + AgMg3 (Ag40Mg60). The hydrogenation process was performed using a Sievert-type sorption analyzer. The hydride decomposition temperature and kinetic properties of the synthesized hydrides were investigated by differential scanning calorimetry (DSC) coupled with thermogravimetric analysis (TGA). Samples with high magnesium content were found to readily absorb significant amounts of hydrogen, while hydrogen absorption was not observed for samples with silver concentrations higher than 50 at. % (AgMg intermetallic phase).


2021 ◽  
Author(s):  
Mahmoud Y. Zorainy ◽  
Serge Kaliaguine ◽  
Mohamed Gobara ◽  
Sherif Elbasuney ◽  
Daria C. Boffito

Abstract The 3D metal-organic framework (MOF), MIL-88B, built from the trivalent metal ions and the ditopic 1,4-Benzene dicarboxylic acid linker (H2BDC), distinguishes itself from the other MOFs for its flexibility and high thermal stability. MIL-88B was synthesized by a rapid microwave-assisted solvothermal method at high power (850 W). The iron-based MIL-88B [Fe3.O.Cl.(O2C-C6H4 -CO2)3] exposed oxygen and iron content of 29% and 24%, respectively, which offers unique properties as an oxygen-rich catalyst for energetic systems. Upon dispersion in an organic solvent and integration into ammonium perchlorate (AP) (the universal oxidizer for energetic systems), the dispersion of the MOF particles into the AP energetic matrix was uniform (investigated via elemental mapping using an EDX detector). Therefore, MIL-88B(Fe) could probe AP decomposition with the exclusive formation of mono-dispersed Fe2O3 nanocatalyst during the AP decomposition. The evolved nanocatalyst can offer superior combustion characteristics. XRD pattern for the MIL-88B(Fe) framework TGA residuals confirmed the formation of α-Fe2O3 nanocatalyst as a final product. The catalytic efficiency of MIL-88B(Fe) on AP thermal behavior was assessed via DSC and TGA. AP solely demonstrated a decomposition enthalpy of 733 J g-1 , while AP/MIL-88B(Fe) showed a 66% higher decomposition enthalpy of 1218 J g-1 ; the main exothermic decomposition temperature was decreased by 71 °C. Besides, MIL-88B(Fe) resulted in a decrease in AP decomposition activation energy by 23% and 25% using Kissinger and Kissinger–Akahira–Sunose (KAS) models, respectively.


Sign in / Sign up

Export Citation Format

Share Document