Blast and Earthquake Resistant Design Data: Behavior of One-Story Reinforced Concrete Shear Walls Containing Openings*

1958 ◽  
Vol 55 (11) ◽  
Author(s):  
L. M. Robinson

The design and detailing of earthquake resistant reinforced concrete shear walls of limited ductility designed by a modified strength design method are discussed. Suitable methods for the evaluation of actions and the determination of internal actions
are advanced, having regard to energy dissipation and the consequences of heavy damage or of collapse. Discussion is not restricted to uniform walls, but is extended to walls with openings, for which a suggested classification and treatment is presented, thus allowing for suitable design techniques for walls transitional between uniform walls and frames to be determined. Applications 
of the proposals are illustrated in an Appendix.


2021 ◽  
Vol 21 (1) ◽  
pp. 261-268
Author(s):  
Seungkyu Kook ◽  
Junbum Kim

The purpose of earthquake-resistant design for typical bridges is to secure no-collapse requirements, and pier columns are essential structural members. To secure no-collapse requirements, a ductile/brittle mechanism should be designed according to the seismic behaviors of pier columns. These formations should be based on the flexure/shear performance curves of pier columns. In this study on the circular reinforced concrete pier columns of typical bridges, the effects of design factors such as height, diameter, and transverse reinforcement ratio on the flexure/shear performance curves are determined. The seismic behaviors of the pier columns are analyzed by overlapping the performance curves. Conditions are proposed for ductile mechanism formation based on the study results.


2020 ◽  
Author(s):  
Ehsan Borbory

One of the types of earthquake-resistant systems is the concrete shear wall system, which has attracted the attention of engineers due to its good performance in past earthquakes. But some architectural constraints force engineers to install openings in shear walls; thus, this will affect the behavior of the shear wall. Many researchers have conducted experimental and finite element studies for assessing the effects of openings in reinforced concrete shear walls. However, there is a lack of comprehensive comparisons between different studies. This paper reviews some most recent experimental and finite element studies available in the literature and presents a review of the main contributions. This literature review reveals that the seismic responses and the stiffness of structures are influenced by the size and location of the openings in the reinforced shear wall.


Sign in / Sign up

Export Citation Format

Share Document