steel fibres
Recently Published Documents


TOTAL DOCUMENTS

469
(FIVE YEARS 164)

H-INDEX

31
(FIVE YEARS 8)

Author(s):  
Ana Caroline Da Costa Santos ◽  
Paul Archbold

Fibre-reinforced concrete (FRC) is widely employed in the construction industry, with assorted fibre types being used for different applications. Typically, steel fibres give additional tensile strength to the mixture, while flexible fibres may be used in large sections, such as floor slabs, to control crack width and to improve the handling ability of precast sections. For many reasons, including durability concerns, environmental impact, thermal performance, etc, alternatives to the currently available fibres are being sought. This study examines the potential of using basalt fibres, a mineral and natural material, as reinforcement of concrete sections in comparison to steel fibres and plain concrete mix. Mixes were tested containing 0.5% and 1.0% of basalt fibres measuring 25mm length, 0.5% of the same material with 48mm length and steel fibres measuring 50mm by 0.05%, 0.1%, 0.15% and 0.2% of the concrete volume. For the mechanical performance analysis, the 3-point bending test was led and the fracture energy, Young’s modulus and tensile strength in different moments of the tests were calculated. When compared to the control mixtures and the steel-fibre-reinforced concrete, the mixes containing basalt had a reduction in their elastic modulus, representing a decrease in the concrete brittleness. At the same time, the fracture energy of the mixtures was significantly increased with the basalt fibres in both lengths. Finally, the flexural strength was also higher for the natural fibre reinforced concrete than for the plain concrete and comparable to the results obtained with the addition of steel fibres by 0.15%.


2022 ◽  
pp. 12-28
Author(s):  
S. Syed Ibrahim ◽  
S. Kandasamy ◽  
S. Pradeepkumar ◽  
R. Subashchandrabose

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 71
Author(s):  
Alejandro Enfedaque ◽  
Marcos G. Alberti ◽  
Jaime C. Gálvez ◽  
Pedro Cabanas

Fiber-reinforced concrete (FRC) has become an alternative for structural applications due its outstanding mechanical properties. The appearance of new types of fibres and the fibre cocktails that can be configured by mixing them has created FRC that clearly exceeds the minimum mechanical properties required in the standards. Consequently, in order to take full advantage of the contribution of the fibres in construction projects, it is of interest to have constitutive models that simulate the behaviour of the materials. This study aimed to simulate the fracture behaviour of five types of FRC, three with steel fibres, one with a combination of two types of steel fibers, and one with a combination of polyolefin fibres and two types of steel fibres, by means of an inverse analysis based on the cohesive crack approach. The results of the numerical simulations defined the softening functions of each FRC formulation and have pointed out the synergies that are created through use of fibre cocktails. The information supplied can be of help to engineers in designing structures with high-performance FRC.


Author(s):  
Alejandro Enfedaque ◽  
Marcos G. Alberti ◽  
Jaime C. Gálvez ◽  
Pedro Cabanas

Fibre reinforced concrete (FRC) has become an alternative for structural applications due its outstanding mechanical properties. The appearance of new types of fibres and the fibre cocktails that can be configured mixing them has created FRC that clearly exceed the minimum mechanical properties required in the standards. Consequently, in order to take full advantage of the contribution of the fibres in construction projects, it is of great interest to have constitutive models that simulate the behaviour of the materials. This study aimed to simulate the fracture behaviour of five types of FRC, three with steel hooked fibres, one with a combination of two types of steel fibres and one with a combination of polyolefin fibres and two types of steel fibres, by means of an inverse analysis based on the cohesive crack approach. The results of the numerical simulations defined the softening functions of each FRC formulation and have pointed out the synergies that are created through use of fibre cocktails. The information obtained might suppose a remarkable advance for designers using high-performance FRC in structural elements.


Author(s):  
Umar Islam Wani

Abstract: This The influence of fibre reinforcement on crack propagation in concrete was studied . Thirty-five double torsion specimens, made with three types of fibres (fibre glass , straight steel fibres and deformed steel fibres ) were tested . The variables were the fibre volume and size of the fibres. The test results indicated that the resistance to rapid crack growth increased somewhat with increasing fibre content up to about 1.25% - 1.5% by volume. The degree of compaction had an enormous effect on the fracture properties .The fracture toughness increased with fibre content up to about 1.25% by volume, and then decreased , due to incomplete compaction. It was found that in this test geometry, fibres did not significantly restrain crack growth. It was also observed that once the crack had propagated down the full length of the specimen, the system changed from a continuous system to a discontinuous system, consisting of two separate plates held together by the fibre reinforcement. Different types of fibres did not significantly affect the fracture toughness. Keywords: Fibre glass, straight steel fibers, deformed steel fibers, fracture toughness.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7065
Author(s):  
Soheil Jahandari ◽  
Masoud Mohammadi ◽  
Aida Rahmani ◽  
Masoumeh Abolhasani ◽  
Hania Miraki ◽  
...  

In this study, the impact of steel fibres and Silica Fume (SF) on the mechanical properties of recycled aggregate concretes made of two different types of Recycled Coarse Aggregates (RCA) sourced from both low- and high-strength concretes were evaluated through conducting 60 compressive strength tests. The RCAs were used as replacement levels of 50% and 100% of Natural Coarse Aggregates (NCA). Hook-end steel fibres and SF were also used in the mixtures at the optimised replacement levels of 1% and 8%, respectively. The results showed that the addition of both types of RCA adversely affected the compressive strength of concrete. However, the incorporation of SF led to compressive strength development in both types of concretes. The most significant improvement in terms of comparable concrete strength and peak strain with ordinary concrete at 28 days was observed in the case of using a combination of steel fibres and SF in both recycled aggregate concretes, especially with RCA sourced from high strength concrete. Although using SF slightly increased the elastic modulus of both recycled aggregate concretes, a substantial improvement in strength was observed due to the reinforcement with steel fibre and the coexistence of steel fibre and SF. Moreover, existing models to predict the elastic modulus of both non-fibrous and fibrous concretes are found to underestimate the elastic modulus values. The incorporation of SF changed the compressive stress-strain curves for both types of RCA. The addition of steel fibre and SF remarkably improved the post-peak ductility of recycled aggregates concretes of both types, with the most significant improvement observed in the case of RCA sourced from a low-strength parent concrete. The existing model to estimate the compressive stress-strain curve for steel fibre-reinforced concrete with natural aggregates was found to reasonably predict the compressive stress-strain behaviour for steel fibres-reinforced concrete with recycled aggregate.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6752
Author(s):  
Małgorzata Pająk ◽  
Grzegorz Wandzik

This paper explores the possibility of the partial replacement of the longitudinal reinforcement in reinforced concrete (RC) beams with recycled steel fibres (RSF). Testing was focused on the contribution of two volume ratios of the RSF—0.5%, 1.0%. Basic compression and flexural tensile tests were performed to evaluate the effectiveness of the fibres following current standards. Additionally, the full-scale beams with and without conventional reinforcement were subjected to four-point bending tests. The results indicate that RSF improved the load-bearing capacity of the RC beams. Cooperation of RSF with the steel bars in carrying loads was proved. Findings from the Digital Image Correlation (DIC) revealed no impact on the cracking pattern of the RC beams.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6634
Author(s):  
V. Sathish Kumar ◽  
N. Ganesan ◽  
P. V. Indira

The need to promote sustainable civil infrastructure is one of the most important concerns in the construction industry. Geopolymer composites are one of the promising eco-friendly materials for the development of low carbon concrete. The main objective of this experimental investigation is to study the effect of hybrid fibres on the shear strength of flexural members made with ternary blend geopolymer concrete (TGPC). A total number of 27 reinforced concrete beams of size 100 × 150 × 1200 mm3 were cast and tested for shear. M55 grade of concrete was considered in this study. Crimped steel fibres and polypropylene fibres with an aspect ratio of 66 and 300, respectively, were used in this work. The main variables considered in this investigation involve two volume proportions of steel fibres, viz., 0.5% and 1% as well as four volume proportions of polypropylene fibres viz., 0.1%, 0.15%, 0.2% and 0.25%. The hybrid fibre-reinforced ternary blend geopolymer concrete (HTGPC) beams were compared with TGPC beams without fibres. From the test results, it was clear that incorporating hybrid fibres improved the shear strength and changed the type of failure of the beam from shear to flexure. Moreover, a method to predict the ultimate shear strength of HTGPC was proposed, and the estimated values were found to be the same as the test results.


2021 ◽  
Vol 1205 (1) ◽  
pp. 012008
Author(s):  
M Drdlova ◽  
P Bibora ◽  
V Prachar

Abstract This study introduces cementitious composite with rubber granulate and waste steel fibres as a new material for construction industry with an enhanced energy absorption capability and impact toughness. Detailed research on physico-mechanical properties of high-performance concrete with waste steel fibres and partial replacement of the aggregates by rubber granulate was performed, with emphasis on impact energy absorption potential. Different aggregate replacement ratios (0–30% wt.) and fibre amount (0–3% wt.) were investigated. The influence of rubber sizes, rubber content and steel fibre content on the mechanical parameters of the rubberized concrete at both quasistatic and dynamic loads was evaluated and discussed. With increasing amount of rubber granulate, the concrete suffered from reduction of its mechanical parameters – compressive and flexural strength, however the energy dissipation capability showed rising trend. This study demonstrated the potential of rubberized concrete with waste steel fibres for use in structures with higher impact resistance requirements.


Sign in / Sign up

Export Citation Format

Share Document