Strut-and-Tie-Based Design and Testing of Reinforced Concrete Pier Caps

2020 ◽  
Vol 117 (2) ◽  
2004 ◽  
Vol 31 (1) ◽  
pp. 109-119 ◽  
Author(s):  
William Cavers ◽  
Gordon A Fenton

There are a number of design methods that have been described for the design of pile caps, but there has been no consensus on which method provides the best approach for the working designer. This paper describes a study conducted to establish the performance of several pile cap design methods, particularly with respect to the Canadian standard, CSA A23.3-94. Previous research was examined to determine the basis of the design methods and the state of current research. The design methods identified were then applied to pile caps for which test data were available. The theoretical loads obtained using the various design methods were compared with the experimental loads. The results of this study indicate that two design models of the five examined are the most suitable. This study also indicates that the provisions of the Canadian design standard are adequate. A possible refinement of the strut-and-tie model incorporating a geometric limit is also outlined.Key words: building codes, footings, pile caps, reinforced concrete, structural design.


2018 ◽  
Vol 161 ◽  
pp. 41-54 ◽  
Author(s):  
Pieter Desnerck ◽  
Janet M. Lees ◽  
Chris T. Morley

2020 ◽  
Vol 10 (18) ◽  
pp. 6217
Author(s):  
Anka Starčev-Ćurčin ◽  
Andrija Rašeta ◽  
Mirjana Malešev ◽  
Danijel Kukaras ◽  
Vlastimir Radonjanin ◽  
...  

The aim of the research presented in this paper is the experimental confirmation of the numerically defined shapes of the Strut-and-Tie models, designed according to the EN 1992-1-1 recommendations, and obtained from the software “ST method”. Three reinforced concrete deep beams with openings were tested. Each of them had the same dimensions and quality of the material characteristics. The specimens, constructed as simply supported beams, were loaded with two concentrated forces and were tested for bending until failure. Each specimen was reinforced with different reinforcement layout determined by variation parameter β, incorporated in the software “ST method”. For the determination of the Strut-and-Tie models, all of the reinforcement layouts were equally favored in the first specimen (β = 1.0 for 0°, 45°, and 90°), only the horizontal direction was favored in the second (β = 1.0 for 0°), while in the third specimen the one at the angle of 45° (β = 1.0 for 45°). Based on the results of experimental research, it was concluded that the behavior of loaded members was in agreement with the proposed shapes of the Strut-and-Tie models that were used for their design, and it was confirmed that the program “ST method” can be used for obtaining Strut–and-Tie models.


Sign in / Sign up

Export Citation Format

Share Document