High-Strength Concrete Deep Beams With Effective Span and Shear Span Variations

10.14359/991 ◽  
1995 ◽  
Vol 92 (4) ◽  
2020 ◽  
pp. 136943322098165
Author(s):  
Jianyang Xue ◽  
Xin Zhang ◽  
Xiaojun Ke

This paper mainly focused on the seismic performance and shear calculation method of steel reinforced high-strength concrete (SRHC) columns with rectangular helical hoops. An experimental investigation was performed in this paper. Eleven SRHC columns with rectangular helical hoops and one with ordinary hoops were constructed at the laboratory of Guangxi university. The failure modes, hysteresis loops, envelope curves, characteristic loads and displacements and cumulative damage analysis are presented and investigated. It can be seen from the test results that the failure modes of SRHC columns can be divided into three types with the shear span ratio increased, namely, shear baroclinic failure mode, flexure-shear failure mode and flexure failure mode. In addition, the specimens with rectangular helical hoops have plumper hysteretic loops. Shear span ratio is the main influencing factor of characteristic load; the axial compression ratio and concrete strength have less influence on characteristic load, while stirrup ratio has little effect on the characteristic load. Finally, a calculation method for shear capacity of SRHC columns under shear baroclinic failure and flexure-shear failure mode is proposed.


2018 ◽  
Vol 67 (2) ◽  
pp. 25-48
Author(s):  
Waldemar Cichorski

The dynamic load displacements were analysed of rectangular concrete deep beams made of very high strength concrete, grade C200, including an evaluation of the physical non-linearity of the construction materials: concrete and reinforcing steel. The analysis was conducted using the method presented in [1]. The numerical calculation results are presented with particular reference to the displacement state of rectangular concrete deep beams. A comparative analysis was conducted on the effect of the high-strength concrete and the steel of increased strength on a class C200 concrete deep beam versus the results produced in [10] for a class C100 concrete deep beam. Keywords: mechanics of structures, reinforced concrete structures, deep beams, dynamic load, physical non-linearity


2018 ◽  
Vol 12 (1) ◽  
pp. 263-282 ◽  
Author(s):  
Sawsan Akram Hassan ◽  
Ansam Hassan Mhebs

Introduction:This study presents the experimental and analytical investigation of the behavior of high strength hybrid reinforced concrete deep beams under monotonic and repeated two-point load. The idea of hybrid in this work is different. Two types of concrete were used in beam but not in cross-section. The first type was the Fibrous High Strength Concrete (FHSC) at shear spans for enhancing shear capacity against cracking due to diagonal strut failure (by adding Steel Fiber (SF) in that regions), while the second type was the Conventional High Strength Concrete (CHSC) at the mid-portion between the two strengthened shear spans.Methods:The experimental work included the casting and testing of ten deep beams. Five among the beams were tested under monotonic loading (control beams) and other beams were tested under repeated loading at the level of 75% of ultimate load of control beams. The effect of some selected parameters as the type of load, the hybrid and non-hybrid beams, the compressive strength of concrete (fʹc) (normal and high) and the amount of web reinforcement (ρw) were studied in terms of crack patterns, ultimate load and load versus midspan deflection.Results and Conclusion:From the experimental test results, when beam cast with fibrous with SF of 1% concrete along entire length, the ultimate load of 10.96% increased as compared with hybrid beam. And it was observed to increase as much as 32.78% as compared with beam cast from conventional high strength concrete under monotonic loading. Under repeated loading of 75% control ultimate load, the ultimate load for beam cast with fibrous concrete along entire length increased as much as 15.32% as compared with hybrid beam. And it was seen to increase 36.17% as compared with the beam cast from conventional high strength concrete. The percentage increase in ultimate load of hybrid (SF ratio 1%) deep beam cast with high strength concrete became 97.3% as compared with the identical beam cast with normal strength concrete under monotonic loading and (98.21%) under repeated loading (load 75% control beam load). The percentage increase as ultimate load for hybrid beam cast with SF ratio 1% was 9.62% as compared with hybrid beam with SF ratio 0%. As the web reinforcement increased from 0 to 0.004 and from 0 to 0.006, the percentage increased in the ultimate load as 28.07% and 57.89%, under monotonic loading as 26.14% and 59.09%, under repeated loading.Then, Strut and Tie model (STM) procedures were used to analyze the experimentally tested hybrid deep beams under monotonic loading of the present investigation. Comparison of experimental results was made with corresponding predicted values using the STM procedure presented of ACI 318R-14 Code and with other procedures


The use of non-corrosive reinforcements in the place of steel reinforcements has therefore been focused as an alternative to improve the life span of the concrete structures. Fibre Reinforced Polymer (FRP) reinforcements offer many advantages over steel reinforcements including resistance to electrochemical corrosion, high strength to weight ratio and easy in fabrication and electromagnetic insulating properties. Further, the use of hybrid FRP reinforcements, in lieu of conventional steel reinforcements requires better understanding under different parametric conditions. Therefore the present study deals mainly with the behaviour of Concrete Deep beams with and without openings reinforced internally with hybrid type Fibre Reinforced Polymer (FRP) reinforcements under static loading conditions. In structural applications, deep beams are commonly used as large span structures such as transfer girders in buildings, bridges, foundation walls, shear walls and offshore structures. In this study,high strength concrete deep beams are investigated. Among the eight beams, four beams are reinforced internally using conventional reinforcements with and without web opening, four beams are reinforced internally using hybrid FRP reinforcements with and without web openings. Different parameters like, high strength concrete, web opening positions (Top, Middle and Bottom), span sprinkled FRP hybrid reinforcements are considered. Based on this study, static load carrying capacities and their modes of failures of deep beams reinforced internally with FRP hybrid type reinforcements for various web openings positions are compared by finite element modelling using ANSYS software with the existing theories for better under standings. Based on the modelling and theoretical work, final conclusions of the present study are derived.


Sign in / Sign up

Export Citation Format

Share Document