6. Wind River Range, Wyoming

2017 ◽  
pp. 113-132
Keyword(s):  
2006 ◽  
Vol 43 (10) ◽  
pp. 1399-1418 ◽  
Author(s):  
Carol D Frost ◽  
C Mark Fanning

The Bighorn Mountains of the central Wyoming Province expose a large tract of Archean crust that has been tectonically inactive and at relatively high crustal levels since ~2.7 Ga. Seven sensitive high-resolution ion microprobe (SHRIMP) U–Pb zircon and titanite age determinations on samples of the main lithologic units provide a geochronological framework for the evolution of this area. The oldest, precisely dated magmatic event occurred at 2950 ± 5 Ma, when diorite to granite dykes and sills intruded an older gneiss complex exposed in the central and southern Bighorn Mountains. Rocks as old as 3.25 Ga may be present in this gneissic basement, as indicated by the oldest dates obtained on areas of zircon grains that are interpreted as inherited cores. A tonalitic gneiss was intruded into the gneiss complex at 2886 ± 5 Ma. Deformation of the central and southern gneisses preceded the intrusion of the Bighorn batholith, a tonalitic to granitic intrusion that occupies the northern portion of the uplift. This composite batholith was intruded over the period 2.86–2.84 Ga. Ca. 3.0–2.8 Ga crust is also present in the Beartooth Mountains, the Washakie block of the northeastern Wind River Range, the Owl Creek Mountains, and the northern Granite Mountains, but late Archean deformation and plutonism has obscured much of the earlier history in the southern portion of this area. The entire area, referred to as the Beartooth–Bighorn Magmatic Zone, has been undeformed since 2.6 Ga. Proterozoic extension was focused in those parts of the Wyoming Province outside of this domain.


Lithosphere ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 448-464
Author(s):  
Richard H. Groshong ◽  
Ryan Porter

Abstract The ability of models designed to use near-surface structural information to predict the deep geometry of a faulted block is tested for a thick-skinned thrust by matching the surface geometry to the crustal structure beneath the Wind River Range, Wyoming, USA. The Wind River Range is an ∼100-km-wide, thick-skinned rotated basement block bounded on one side by a high-angle reverse fault. The availability of a deep seismic-reflection profile and a detailed crustal impedance profile based on teleseismic receiver-function analysis makes this location ideal for testing techniques used to predict the deep fault geometry from shallow data. The techniques applied are the kinematic models for a circular-arc fault, oblique simple-shear fault, shear fault-bend fold, and model-independent excess area balancing. All the kinematic models imply that the deformation cannot be exclusively rigid-body rotation but rather require distributed deformation throughout some or all of the basement. Both the circular-arc model and the oblique-shear models give nearly the same best fit to the master fault geometry. The predicted lower detachment matches a potential crustal detachment zone at 31 km subsea. The thrust ramp is located close to where this zone dies out to the southwest. The circular-arc model implies that the penetrative deformation could be focused at the trailing edge of the basement block rather than being distributed uniformly throughout and thus helps to explain the line of second-order anticlines along the trailing edge of the Wind River block. Key points: (1) The circular-arc fault model and the oblique-shear model predict a lower detachment for the Wind River rotated block to be ∼31 km subsea, consistent with the crustal structure as defined by teleseismic receiver-function analysis. The thrust ramp starts where this zone dies out. (2) The kinematic models require distributed internal deformation within the basement block, probably concentrated at the trailing edge. (3) The uplift at the trailing edge of the rotated block is explained by the circular-arc kinematic model as a requirement to maintain area balance of a mostly rigid block above a horizontal detachment; the oblique-shear model can explain the uplift as caused by displacement on a dipping detachment.


Sign in / Sign up

Export Citation Format

Share Document