bighorn mountains
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 10)

H-INDEX

11
(FIVE YEARS 1)

Author(s):  
Steven M. Plescia ◽  
Anne F. Sheehan ◽  
Seth S. Haines ◽  
Lindsay L. Worthington ◽  
Scott Cook ◽  
...  

ABSTRACT We demonstrate successful crustal imaging via teleseismic P-wave coda autocorrelation, using data recorded on a 261 station array of vertical-component high-frequency geophones in the area of the Bighorn Mountains, Wyoming, U.S.A. We autocorrelate the P-wave coda of 30 teleseismic events and use phase-weighted stacking to yield seismic profiles comparable to low-passed versions of those produced via controlled-source vertical seismic reflection. Our process recovers reflections from the bottoms of the Bighorn and Powder River basins that flank the Bighorn Mountains. We also identify a mid-crustal reflector that aligns with a region of increased reflectivity, previously interpreted as a Precambrian province boundary. Our results demonstrate the utility of crustal imaging with teleseismic P-wave coda energy using modern large-array seismic data, and they corroborate previous interpretations of crustal structures in the study area.


2020 ◽  
Vol 57 (4) ◽  
pp. 375-388
Author(s):  
Ryan Bessen ◽  
Jennifer Gifford ◽  
Zack Ledbetter ◽  
Sean McGuire ◽  
Kyle True ◽  
...  

This project involved the construction of a detailed geologic map of the Park Reservoir, Wyoming 7.5-Minute Quadrangle (Scale 1:24,000). The Quadrangle occurs entirely in the Bighorn National Forest, which is a popular recreation site for thousands of people each year. This research advances the scientific understanding of the geology of the Bighorn Mountains and the Archean geology of the Wyoming Province. Traditional geologic mapping techniques were used in concert with isotopic age determinations. Our goal was to further subdivide the various phases of the 2.8–3.0 Ga Archean rocks based on their rock types, age, and structural features. This research supports the broader efforts of the Wyoming State Geological Survey to complete 1:24,000 scale geologic maps of the state. The northern part of the Bighorn Mountains is composed of the Bighorn batholith, a composite complex of intrusive bodies that were emplaced between 2.96–2.87 Ga. Our mapping of the Park Reservoir Quadrangle has revealed the presence of five different Archean quartzofeldspathic units, two sets of amphibolite and diabase dikes, a small occurrence of the Cambrian Flathead Sandstone, two Quaternary tills, and Quaternary alluvium. The Archean rock units range in age from ca. 2.96–2.75 Ga, the oldest of which are the most ancient rocks yet reported in the Bighorn batholith. All the Archean rocks have subtle but apparent planar fabric elements, which are variable in orientation and are interpreted to represent magmatic flow during emplacement. The Granite Ridge tear fault, which is the northern boundary of the Piney Creek thrust block, is mapped into the Archean core as a mylonite zone. This relationship indicates that the bounding faults of the Piney Creek thrust block were controlled by weak zones within the Precambrian basement rocks.


2020 ◽  
Vol 49 (4) ◽  
pp. 895-901 ◽  
Author(s):  
Robert B Srygley

Abstract Insect diapause is a state of arrested development persisting when conditions are favorable for growth. Prolonged diapause, which occurs when insects remain in diapause for multiple years, is uncommon. Mormon crickets Anabrus simplex Haldane, a katydid and pest of rangeland forage and crops, were thought to be biennial in the Bighorn Mountains of Wyoming, but they are able to prolong diapause in the egg stage for multiple years. To test whether parental photoperiod serves as a cue to prolong diapause, mating pairs from the Bighorn Mountains were set in the same daily temperature and humidity profiles with 20 pairs on short daylength (12:12 [L:D] h) and 20 on long daylength (15:9 [L:D] h). Almost every parental pair had some undeveloped eggs after two warm periods. Females in short daylength were not more likely to have eggs with a biennial life cycle, but they were more likely than those in long daylength to lay eggs with multi-annual life cycles. Parents on short daylength were more likely to lay inviable eggs. Other fitness measures, such as hatchling mass, nymphal survivorship, and adult mass were not different between parental treatments. Diapause termination distributed over multiple years probably constitutes a bet-hedging strategy in an unpredictable environment.


2020 ◽  
Vol 57 (1) ◽  
pp. 21-40
Author(s):  
Alexandra Wallenberg ◽  
Michelle Dafov ◽  
David Malone ◽  
John Craddock

A harzburgite intrusion, which is part of the trailside mafic complex) intrudes ~2900-2950 Ma gneisses in the hanging wall of the Laramide Bighorn uplift west of Buffalo, Wyoming. The harzburgite is composed of pristine orthopyroxene (bronzite), clinopyroxene, serpentine after olivine and accessory magnetite-serpentinite seams, and strike-slip striated shear zones. The harzburgite is crosscut by a hydrothermally altered wehrlite dike (N20°E, 90°, 1 meter wide) with no zircons recovered. Zircons from the harzburgite reveal two ages: 1) a younger set that has a concordia upper intercept age of 2908±6 Ma and a weighted mean age of 2909.5±6.1 Ma; and 2) an older set that has a concordia upper intercept age of 2934.1±8.9 Ma and a weighted mean age 2940.5±5.8 Ma. Anisotropy of magnetic susceptibility (AMS) was used as a proxy for magmatic intrusion and the harzburgite preserves a sub-horizontal Kmax fabric (n=18) suggesting lateral intrusion. Alternating Field (AF) demagnetization for the harzburgite yielded a paleopole of 177.7 longitude, -14.4 latitude. The AF paleopole for the wehrlite dike has a vertical (90°) inclination suggesting intrusion at high latitude. The wehrlite dike preserves a Kmax fabric (n=19) that plots along the great circle of the dike and is difficult to interpret. The harzburgite has a two-component magnetization preserved that indicates a younger Cretaceous chemical overprint that may indicate a 90° clockwise vertical axis rotation of the Clear Creek thrust hanging wall, a range-bounding east-directed thrust fault that accommodated uplift of Bighorn Mountains during the Eocene Laramide Orogeny.


2019 ◽  
Vol 58 ◽  
pp. 125633 ◽  
Author(s):  
Amy R. Hudson ◽  
Raquel Alfaro-Sanchez ◽  
Flurin Babst ◽  
Soumaya Belmecheri ◽  
David J.P. Moore ◽  
...  

2019 ◽  
Vol 11 (3) ◽  
pp. 1
Author(s):  
Eric Clausen

Detailed topographic maps covering a high elevation Bighorn-Powder River drainage divide segment in the southern Bighorn Mountains are used to test a recently proposed regional geomorphology paradigm. Fundamentally different from the commonly accepted paradigm the new paradigm predicts immense south-oriented continental ice sheet melt water floods once flowed across what is now the entire Missouri River drainage basin, in which the high Bighorn Mountains are located. Such a possibility is incompatible with commonly accepted paradigm expectations and previous investigators have interpreted Bighorn Mountains geomorphic history quite differently. The paradigm test began in the high glaciated Bighorn Mountains core area where numerous passes, or divide crossings, indicate multiple and sometimes closely spaced streams of water once flowed across what is now the Bighorn-Powder River drainage divide. To the south of the glaciated area, but still in a Precambrian bedrock region, the test found the roughly adjacent and parallel south-oriented North Fork Powder River and Canyon Creek headwaters located on opposite sides of the Bighorn-Powder River drainage divide with North Fork Powder River headwaters closely linked to a 300-meter deep pass through which south-oriented water had probably flowed. Shallower divide crossings located further to the south suggest diverging and converging streams of water once flowed not only across the Bighorn-Powder River drainage divide, but also across Powder River and Bighorn River tributary drainage divides. The paradigm test also found published geologic maps and reports showing the presence of possible flood transported and deposited alluvium. While unable to determine the water source, the new paradigm test did find evidence that large south-oriented floods had crossed what was probably a rising Bighorn Mountains mountain range.


2019 ◽  
Vol 56 (3) ◽  
pp. 267-294 ◽  
Author(s):  
John Malone ◽  
David Malone ◽  
Jennifer Gifford ◽  
John Craddock ◽  
Jeanette Arkle ◽  
...  

The Bighorn Mountains in north-central Wyoming reveal one of the largest exposures of 2800 Ma to 3000 Ma rocks in Laurentia. The northern part of the crystalline core is composed of the composite Bighorn batholith, whereas the central and southern areas of the range expose older gneiss complexes as well as minor supracrustal rocks. We provide new high-resolution LA-ICPMS U-Pb data on zircons sampled from eleven samples of tonalite, granodiorite, mylonite, and migmatite from the southern margin of the Bighorn batholith in the headwaters of the north fork of Paint Rock Creek. These rocks range from strongly foliated to massive and are difficult to subdivide into mappable units in the field because of their lithologic and structural similarities. Several cross-cutting mylonite zones (<10-meter-wide) that trend ~N70°E-N80E and dip steeply are present in the study area. Three distinct age populations are evident: ~2930-2940 Ma, 2905-2915 Ma, and 2880-2890 Ma. Several samples contain xenocrystic zircons >3000 Ma, ranging to 3500 Ma, which indicates assimilation of older crust. Each of the three age populations reported here are older than the previously reported age of ~2850 Ma age for the northern Bighorn Batholith but within the 2890 Ma, 2940 Ma, and 2950 Ma age groupings previously reported for the southern gneiss terrane. Three conclusions can be drawn from these data. First, the Bighorn batholith, at least along the southern margin, contains phases at least 80 million years older than the northern phase of the body, and emplacement was protracted and occurred over a ~100 Ma period. Second, episodes of both intrusion and shearing took place in this area as the various phases of the Bighorn batholith were emplaced. Finally, the existence of inherited zircons within the Bighorn batholith in the age range of ~3.0 Ga to 3.5 Ga indicates that the Bighorn batholith intruded through older crust. This older crust is perhaps a northern extension of Sacawee block in the northern Granite Mountains of central Wyoming, which may underlie the Bighorn Mountains.


Sign in / Sign up

Export Citation Format

Share Document