fluvial response
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 18)

H-INDEX

24
(FIVE YEARS 1)

Author(s):  
Lisa M. Harrison ◽  
Tom J. Coulthard ◽  
Peter E. Robins ◽  
Matthew J. Lewis

AbstractFluvial and surge-tide extremes can occur synchronously resulting in compound flooding in estuaries, greatly intensifying the hazard. This flood risk has the potential to increase in the future as the frequency, phasing and/or intensity of these drivers change. Improved understanding of how extreme fluvial discharge and surge-tides interact will help inform future flood mitigation methodology. In this paper, therefore, we resolve for the first time intra-estuary sensitivities to fluvial and surge-tide extremes, for two contrasting UK estuaries (Humber and Dyfi). Model simulations at hyper-spatial resolution (< 50 m) using a 2D hydrodynamic model predicted compound flooding hazards based on: (1) present-day extreme events (worst on record); (2) present-day extreme events with shifted timings of the drivers to maximise flooding; and (3) modified drivers representing projected climate change. We found that in a small estuary with short-duration, high-intensity fluvial inputs (Dyfi), flood extent is sensitive to the relative timing of the fluvial and surge-tide drivers. In contrast, the relative timing of these drivers did not affect flooding in a larger estuary with a slower fluvial response to rainfall (Humber). In the Humber, extreme fluvial inputs during a compound hazard actually reduced maximum water depths in the outer estuary, compared with a surge-tide-only event. Projected future changes in these drivers by 2100 will increase compound flooding hazards: simulated sea-level rise scenarios predicted substantial and widespread flooding in both estuaries. However, projected increases in surge-tide behaved differently to sea-level rise of the same magnitude, resulting in a greater seawater influx and more flooding. Increased fluvial volumes were the weakest driver of estuarine flooding. In this paper we show how these interactions are complex and how the hydrodynamics vary considerably between different estuaries and sites within estuaries, making it difficult to generalise, use probabilistic or use 1D approaches for assessing compound flooding hazards. Hence, we contribute new knowledge and methods for catchment-to-coast impact modelling used for flood mitigation strategies.


2021 ◽  
Vol 7 ◽  
Author(s):  
Peter E. Robins ◽  
Matt J. Lewis ◽  
Mariam Elnahrawi ◽  
Charlotte Lyddon ◽  
Neil Dickson ◽  
...  

Estuaries are potentially exposed to compound flooding where weather-driven extreme sea levels can occur synchronously with extreme fluvial discharge to amplify the hazard. The likelihood of compound flooding is difficult to determine due to multiple interacting physical processes operating at sub-daily scales, and poor observation records within estuaries with which to determine potential future probabilistic scenarios. We hypothesize that fluvial extremes can occur within the peak of the surge in small/steep catchments because of rapid runoff times, whilst the length-scale in larger/flatter catchments will result in fluvial and marine extremes being out-of-phase. Data (15 min river flow and hourly sea level) spanning 40 years were analyzed to assesses the behaviour and timings of fluvial and sea level extremes in two contrasting estuaries: Humber and Dyfi (United Kingdom). Compound events were common in the Dyfi, a small/steep catchment on Britain’s west coast with fast fluvial response times. Almost half of the 937 skew-surge events (95th-percentile) occurred within a few hours of an extreme fluvial peak, suggesting that flood risk is sensitive to the storm timing relative to high tide—especially since flows persisted above the 95th-percentile typically for less than 12 h. Compound events were more frequent during autumn/winter than spring/summer. For the Humber, a larger/flatter catchment on the east coast with slower fluvial response times, extreme fluvial and skew-surge peaks were less frequent (half as many as the Dyfi) and compound events were less common (15% of events co-occurred). Although flows in the Humber persisted above the 95th-percentile for typically between one and 4 days, hence overlapping several high tides and possibly other surges. Analysis of 56 flooding events across both estuaries revealed: 1) flooding is more common in the Dyfi than Humber; 2) Dyfi flooding is driven by 99th-percentile flows lasting hours and co-occurring with a 95th percentile skew-surge; 3) Humber flooding was driven by 95th-percentile flows lasting days, or surge-driven—but rarely co-occurring. Our results suggest that compound flooding studies require at least hourly data (previous analyses have often used daily-means), especially for smaller systems and considering the potential intensification of rainfall patterns into the future.


Science ◽  
2021 ◽  
Vol 373 (6551) ◽  
pp. 204-207
Author(s):  
Kelian Dascher-Cousineau ◽  
Noah J. Finnegan ◽  
Emily E. Brodsky

Successive earthquakes can drive landscape evolution. However, the mechanism and pace with which landscapes respond remain poorly understood. Offset channels in the Carrizo Plain, California, capture the fluvial response to lateral slip on the San Andreas Fault on millennial time scales. We developed and tested a model that quantifies competition between fault slip, which elongates channels, and aggradation, which causes channel infilling and, ultimately, abandonment. Validation of this model supports a transport-limited fluvial response and implies that measurements derived from present-day channel geometry are sufficient to quantify the rate of bedload transport relative to slip rate. Extension of the model identifies the threshold for which persistent change in transport capacity, obliquity in slip, or advected topography results in reorganization of the drainage network.


2020 ◽  
Vol 64 (4) ◽  
Author(s):  
Damian MOSKALEWICZ ◽  
Karol TYLMANN ◽  
Piotr Paweł WOŹNIAK ◽  
Natalia KOPYŚĆ ◽  
Piotr MOSKA

2020 ◽  
Vol 553 ◽  
pp. 60-72 ◽  
Author(s):  
Chinmay Dash ◽  
Manoj K. Jaiswal ◽  
Pitambar Pati ◽  
Narendra Kumar Patel ◽  
Atul Kumar Singh ◽  
...  

2020 ◽  
Vol 45 (10) ◽  
pp. 2380-2393 ◽  
Author(s):  
Samantha Dow ◽  
Noah P. Snyder ◽  
William B. Ouimet ◽  
Anna M. Martini ◽  
Brian Yellen ◽  
...  

2020 ◽  
Author(s):  
Peter Robins ◽  
Lisa Harrison ◽  
Mariam Elnahrawi ◽  
Matt Lewis ◽  
Tom Coulthard ◽  
...  

&lt;p&gt;Coastal flooding worldwide causes the vast majority of natural disasters; for the UK costing &amp;#163;2.2 billion/year. Fluvial and surge-tide extremes can occur synchronously resulting in combination flooding hazards in estuaries, intensifying the flood risk beyond fluvial-only or surge-only events. Worse, this flood risk has the potential to increase further in the future as the frequency and/or intensity of these drivers change, combined with projected sea-level rise. Yet, the sensitivity of contrasting estuaries to combination and compound flooding hazards at sub-daily scales &amp;#8211; now and in the future &amp;#8211; is unclear. Here, we investigate the dependence between fluvial and surge interactions at sub-daily scales for contrasting catchment and estuary types (Humber vs. Dyfi, UK), using 50+ years of data: 15-min fluvial flows and hourly sea levels. Additionally, we simulate intra-estuary (&lt;50&amp;#160;m resolution) sensitivities to combination flooding hazards based on: (1) realistic extreme events (worst-on-record); (2) realistic events with shifted timings of the drivers to maximise flooding; and (3) modified drivers representing projected climate change.&lt;/p&gt;&lt;p&gt;For well-documented flooding events, we show significant correlation between skew surge and peak fluvial flow, for the Dyfi (small catchment and estuary with a fast fluvial response on the west coast of Britain), with a higher dependence during autumn/winter months. In contrast, we show no dependence for the Humber (large catchment and estuary with a slow fluvial response on the east coast of Britain). Cross-correlation results, however, did show correlation with a time lag (~10 hours). For the Dyfi, flood extent was sensitive to the relative timing of the fluvial and surge-tide drivers. In contrast, the relative timing of these drivers did not affect flooding in the Humber. However, extreme fluvial flows in the Humber actually reduced water levels in the outer estuary, compared with a surge-only event. Projected future changes in these drivers by 2100 are likely to increase combination flooding hazards: sea-level rise scenarios predicted substantial and widespread flooding in both estuaries. However, similar increases in storm surge resulted in a greater seawater influx, altering the character of the flooding. Projected changes in fluvial volumes were the weakest driver of estuarine flooding. On the west coast of Britain containing many small/steep catchments, combination flooding hazards from fluvial and surges extremes occurring together is likely. Moreover, high-resolution data and hydrodynamic modelling are necessary to resolve the impact and inform flood mitigation methodology.&lt;/p&gt;


2020 ◽  
Vol 8 (1) ◽  
pp. 123-159
Author(s):  
Helen W. Beeson ◽  
Scott W. McCoy

Abstract. Nonuniform rock uplift in the form of tilting has been documented in convergent margins, postorogenic landscapes, and extensional provinces. Despite the prevalence of tilting, the transient fluvial response to tilting has not been quantified such that tectonic histories involving tilt can be extracted from river network forms. We used numerical landscape evolution models to characterize the transient erosional response of a river network initially at equilibrium to rapid tilting. We focus on the case of punctuated rigid-block tilting, though we explore longer-duration tilting events and nonuniform uplift that deviates from perfect rigid-block tilting such as that observed when bending an elastic plate or with more pronounced internal deformation of a fault-bounded block. Using a model river network composed of linked 1-D river longitudinal profile evolution models, we show that the transient response to a punctuated rigid-block tilting event creates a suite of characteristic forms or geomorphic signatures in mainstem and tributary profiles that collectively are distinct from those generated by other perturbations, such as a step change in the uniform rock uplift rate or a major truncation of the headwater drainage area, that push a river network away from equilibrium. These signatures include (1) a knickpoint in the mainstem that separates a downstream profile with uniform steepness (i.e., channel gradient normalized for drainage area) from an upstream profile with nonuniform steepness, with the mainstem above the knickpoint more out of equilibrium than the tributaries following forward tilting toward the outlet, versus the mainstem less out of equilibrium than the tributaries following back tilting toward the headwaters; (2) a pattern of mainstem incision below paleo-topography markers that increases linearly up to the mainstem knickpoint or vice versa following back tilting; and (3) tributary knickzones with nonuniform steepness that mirrors that of the mainstem upstream of the slope-break knickpoint. Immediately after a punctuated tilting event, knickpoints form at the mainstem outlet and each mainstem–tributary junction. Time since the cessation of rapid tilting is recorded by the mainstem knickpoint location relative to base level and by the upstream end of tributary knickzones relative to the mainstem–tributary junction. Tilt magnitude is recorded in the spatial gradient of mainstem incision depth and, in the forward tilting case, also by the spatial gradient in tributary knickzone drop height. Heterogeneous lithology can modulate the transient response to tilting and, post tilt, knickpoints can form anywhere in a stream network where more erodible rock occurs upstream of less erodible rock. With a full 2-D model, we show that stream segments flowing in the tilt direction have elevated channel gradient early in the transient response. Tilting is also reflected in network topologic changes via stream capture oriented in the direction of tilt. As an example of how these geomorphic signatures can be used in concert with each other to estimate the timing and magnitude of a tilting event, we show a sample of rivers from two field sites: the Sierra Nevada, California, USA, and the Sierra San Pedro Mártir, Baja California, Mexico, two ranges thought to have been tilted westward toward river outlets in the late Cenozoic.


Sign in / Sign up

Export Citation Format

Share Document