wyoming province
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 12)

H-INDEX

19
(FIVE YEARS 0)

2022 ◽  
Author(s):  
John P. Craddock ◽  
David H. Malone ◽  
Alex Konstantinou ◽  
John Spruell ◽  
Ryan Porter

ABSTRACT We report the results of 167 calcite twinning strain analyses (131 limestones and 36 calcite veins, n = 7368 twin measurements)t from the Teton–Gros Ventre (west; n = 21), Wind River (n = 43), Beartooth (n = 32), Bighorn (n = 32), and Black Hills (east; n = 11) Laramide uplifts. Country rock limestones record only a layer-parallel shortening (LPS) strain fabric in many orientations across the region. Synorogenic veins record both vein-parallel shortening (VPS) and vein-normal shortening (VNS) fabrics in many orientations. Twinning strain overprints were not observed in the limestone or vein samples in the supracrustal sedimentary veneer (i.e., drape folds), thereby suggesting that the deformation and uplift of Archean crystalline rocks that form Laramide structures were dominated by offset on faults in the Archean crystalline basement and associated shortening in the midcrust. The twinning strains in the pre-Sevier Jurassic Sundance Formation, in the frontal Prospect thrust of the Sevier belt, and in the distal (eastern) foreland preserve an LPS oriented approximately E-W. This LPS fabric is rotated in unique orientations in Laramide uplifts, suggesting that all but the Bighorn Mountains were uplifted by oblique-slip faults. Detailed field and twinning strain studies of drape folds identified second-order complexities, including: layer-parallel slip through the fold axis (Clarks Fork anticline), attenuation of the sedimentary section and fold axis rotation (Rattlesnake Mountain), rotation of the fold axis and LPS fabric (Derby Dome), and vertical rotations of the LPS fabric about a horizontal axis with 35% attenuation of the sedimentary section (eastern Bighorns). Regional cross sections (E-W) across the Laramide province have an excess of sedimentary veneer rocks that balance with displacement on a detachment at 30 km depth and perhaps along the Moho discontinuity at 40 km depth. Crustal volumes in the Wyoming Province balance when deformation in the western hinterland is included.


2021 ◽  
Author(s):  
John P. Craddock ◽  
et al.
Keyword(s):  

Table S1: Laramide CTA data and Table S2: Summary Laramide CTA data<br>


2021 ◽  
Author(s):  
John P. Craddock ◽  
et al.
Keyword(s):  

Table S1: Laramide CTA data and Table S2: Summary Laramide CTA data<br>


2021 ◽  
Vol 58 (1) ◽  
pp. 27-37
Author(s):  
Jeffrey W. Bader

The North Owl Creek fault is an E–W-striking, basement-rooted Laramide structure located in the Owl Creek Mountains of north-central Wyoming that likely has Precambrian origins. It is defined by a rectilinear zone of deformation that extends eastward into the subsurface where it is postulated to intersect the Kaycee fault zone of the western Powder River Basin, and perhaps extends into western South Dakota along the Dewey fault zone. Several localized basement-rooted wrench zones have been identified in the foreland of the North American Cordillera; however, identification of more regional zones has been minimal. The presence of larger fault zones that cut nearly the entire Archean basement across the Wyoming Province has implications for Precambrian plate tectonics and structural inheritance in foreland basins such as the Powder River. This paper presents results of a structural analysis that tests this hypothesis.


2020 ◽  
Vol 57 (4) ◽  
pp. 375-388
Author(s):  
Ryan Bessen ◽  
Jennifer Gifford ◽  
Zack Ledbetter ◽  
Sean McGuire ◽  
Kyle True ◽  
...  

This project involved the construction of a detailed geologic map of the Park Reservoir, Wyoming 7.5-Minute Quadrangle (Scale 1:24,000). The Quadrangle occurs entirely in the Bighorn National Forest, which is a popular recreation site for thousands of people each year. This research advances the scientific understanding of the geology of the Bighorn Mountains and the Archean geology of the Wyoming Province. Traditional geologic mapping techniques were used in concert with isotopic age determinations. Our goal was to further subdivide the various phases of the 2.8–3.0 Ga Archean rocks based on their rock types, age, and structural features. This research supports the broader efforts of the Wyoming State Geological Survey to complete 1:24,000 scale geologic maps of the state. The northern part of the Bighorn Mountains is composed of the Bighorn batholith, a composite complex of intrusive bodies that were emplaced between 2.96–2.87 Ga. Our mapping of the Park Reservoir Quadrangle has revealed the presence of five different Archean quartzofeldspathic units, two sets of amphibolite and diabase dikes, a small occurrence of the Cambrian Flathead Sandstone, two Quaternary tills, and Quaternary alluvium. The Archean rock units range in age from ca. 2.96–2.75 Ga, the oldest of which are the most ancient rocks yet reported in the Bighorn batholith. All the Archean rocks have subtle but apparent planar fabric elements, which are variable in orientation and are interpreted to represent magmatic flow during emplacement. The Granite Ridge tear fault, which is the northern boundary of the Piney Creek thrust block, is mapped into the Archean core as a mylonite zone. This relationship indicates that the bounding faults of the Piney Creek thrust block were controlled by weak zones within the Precambrian basement rocks.


Geosciences ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 271
Author(s):  
Jennifer N. Gifford ◽  
Shawn J. Malone ◽  
Paul A. Mueller

The accretion of the Wyoming, Hearne, and Superior Provinces to form the Archean core of western Laurentia occurred rapidly in the Paleoproterozoic. Missing from Hoffman’s (1988) original rapid aggregation model was the Medicine Hat block (MHB). The MHB is a structurally distinct, complex block of Precambrian crystalline crust located between the Archean Wyoming Craton and the Archean Hearne Province and overlain by an extensive Phanerozoic cover. It is distinguished on the basis of geophysical evidence and limited geochemical data from crustal xenoliths and drill core. New U-Pb ages and Lu-Hf data from zircons reveal protolith crystallization ages from 2.50 to 3.28 Ga, magmatism/metamorphism at 1.76 to 1.81 Ga, and εHfT values from −23.3 to 8.5 in the Archean and Proterozoic rocks of the MHB. These data suggest that the MHB played a pivotal role in the complex assembly of western Laurentia in the Paleoproterozoic as a conjugate or extension to the Montana Metasedimentary Terrane (MMT) of the northwestern Wyoming Province. This MMT–MHB connection likely existed in the Mesoarchean, but it was broken sometime during the earliest Paleoproterozoic with the formation and closure of a small ocean basin. Closure of the ocean led to formation of the Little Belt arc along the southern margin of the MHB beginning at approximately 1.9 Ga. The MHB and MMT re-joined at this time as they amalgamated into the supercontinent Laurentia during the Great Falls orogeny (1.7–1.9 Ga), which formed the Great Falls tectonic zone (GFTZ). The GFTZ developed in the same timeframe as the better-known Trans-Hudson orogen to the east that marks the merger of the Wyoming, Hearne, and Superior Provinces, which along with the MHB, formed the Archean core of western Laurentia.


2020 ◽  
Author(s):  
Fabio Da Prat ◽  
◽  
Carol D. Frost ◽  
Darrell J. Henry ◽  
David W. Mogk ◽  
...  

2019 ◽  
Author(s):  
Besim Dragovic ◽  
◽  
Mark J. Caddick ◽  
Victor E. Guevara ◽  
Jeremy Inglis
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document