Fabrication of Metallic Nano Pillar Arrays on Substrate by Sputter Coating and Direct Imprinting Processes

Author(s):  
Potejanasak Potejana ◽  
Nopparat Seemuang
Author(s):  
William P. Wergin ◽  
Eric F. Erbe ◽  
Eugene L. Vigil

Investigators have long realized the potential advantages of using a low temperature (LT) stage to examine fresh, frozen specimens in a scanning electron microscope (SEM). However, long working distances (W.D.), thick sputter coatings and surface contamination have prevented LTSEM from achieving results comparable to those from TEM freeze etch. To improve results, we recently modified techniques that involve a Hitachi S570 SEM, an Emscope SP2000 Sputter Cryo System and a Denton freeze etch unit. Because investigators have frequently utilized the fractured E face of the plasmalemma of yeast, this tissue was selected as a standard for comparison in the present study.In place of a standard specimen holder, a modified rivet was used to achieve a shorter W.D. (1 to -2 mm) and to gain access to the upper detector. However, the additional height afforded by the rivet, precluded use of the standard shroud on the Emscope specimen transfer device. Consequently, the sample became heavily contaminated (Fig. 1). A removable shroud was devised and used to reduce contamination (Fig. 2), but the specimen lacked clean fractured edges. This result suggested that low vacuum sputter coating was also limiting resolution.


2020 ◽  
Vol 17 (7/8/9/10) ◽  
pp. 583
Author(s):  
Dirk Jonker ◽  
Lucas Kooijman ◽  
Yasser Pordeli ◽  
Bernhard Van Der Wel ◽  
Erwin Berenschot ◽  
...  
Keyword(s):  

2011 ◽  
Vol 239-242 ◽  
pp. 2524-2527
Author(s):  
Si Si Liu ◽  
Chao Hui Zhang ◽  
Han Bing Zhang

The relationship between the wettability and the roughness structure on silicon surface is studied. The unitary microscale square pillar arrays are fabricated by the way of inductively coupled plasma (ICP). The wettability of water droplets on the silicon surface is changed from hydrophilic to hydrophobic only by introducing microscale pillarlike structure. Furthermore, the scale effects of the unitary rough structure on hydrophobicity are investigated. For those silicon surfaces with a fixed pillar height, the relatively larger scale of grooves leads the droplets wettability state to unstable Cassie state and the contact angle will initially get larger and then decrease with the increase of groove width. The research could provide further insights into the design of functional surface with controllable roughness-induced hydrophobic.


2008 ◽  
Vol 323 (1) ◽  
pp. 187-190 ◽  
Author(s):  
Hiroyo Segawa ◽  
Yasuo Yamazaki ◽  
Shigeru Tachiki ◽  
Tetsuji Yano ◽  
Shuichi Shibata

Author(s):  
Xiaomin Wu ◽  
Li Li ◽  
Ri Liu ◽  
Zhankun Weng ◽  
Zuobin Wang

Author(s):  
Jingji Liu ◽  
Boyang Zhang ◽  
Yajun Zhang ◽  
Yiqiang Fan

Abstract Paper-based microfluidics has been widely used in chemical and medical analysis applications. In the conventional paper-based microfluidic approach, fluid is propagating inside the porous structure, and the flow direction of the fluid propagation is usually controlled with the pre-defined hydrophobic barrier (e.g. wax). However, the fluid propagation velocity inside the paper-based microfluidic devices largely depends on the material properties of paper and fluid, the relative control method is rarely reported. In this study, a fluid propagation velocity control method is proposed for paper-based microfluidics: hydrophobic pillar arrays with different configurations were deposited in the microchannels in paper-based microfluidics for flow speed control, result indicates the deposited hydrophobic pillar arrays can effectively slow down the fluid propagation at different levels and can be used to passively control the fluid propagation inside microchannels for paper-based microfluidics. For the demonstration of the proposed fluid control methods, a paper-based microfluidic device for nitrite test in water was also fabricated. The proposed fluid control method for paper-based microfluidics may have significant importance for applications that involve sequenced reactions and more actuate fluid manipulation.


2009 ◽  
Vol 30 (18) ◽  
pp. 3242-3249 ◽  
Author(s):  
Yick Chuen Chan ◽  
Yitshak Zohar ◽  
Yi-Kuen Lee

Sign in / Sign up

Export Citation Format

Share Document