functional surface
Recently Published Documents


TOTAL DOCUMENTS

353
(FIVE YEARS 105)

H-INDEX

35
(FIVE YEARS 5)

Crystals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 106
Author(s):  
Hoang Thi Phuong ◽  
Nguyen Kim Thoa ◽  
Phung Thi Anh Tuyet ◽  
Quyen Nguyen Van ◽  
Yen Dao Hai

Cellulose nanomaterials (CNs) are renewable, bio-derived materials that can address not only technological challenges but also social impacts. This ability results from their unique properties, for example, high mechanical strength, high degree of crystallinity, biodegradable, tunable shape, size, and functional surface chemistry. This minireview provides chemical and physical features of cellulose nanomaterials and recent developments as an adsorbent and an antimicrobial material generated from bio-renewable sources.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3460
Author(s):  
Guanliang Sun ◽  
Ning Li ◽  
Dan Wang ◽  
Guanchen Xu ◽  
Xingshuang Zhang ◽  
...  

Rapid and effective detection of pesticide residues from complex surfaces of fruits and vegetables has important significance. Herein, we report a novel three-dimensional (3D) hierarchical porous functional surface-enhanced Raman scattering (SERS) substrate, which is fabricated by successive two-step hydrothermal synthesis strategy of silver nanoparticles (Ag NPs) and cobalt oxide nanowires (Co3O4 NWs) on the 3D copper foam framework as Cu@Co3O4@Ag-H. The strategy offers a new avenue for localized plasmonic materials distribution and construction, which exhibits better morphology regulation ability and SERS activity (or hotspots engineering) than physical spurring obtained Cu@Co3O4@Ag-S. The developed Cu@Co3O4@Ag-H possesses large surface area and rich hotspots, which contributes to the excellent SERS performance, including homogeneity (RSD of 7.8%), sensitivity (enhancement factor, EF of 2.24 × 108) and stability. The Cu@Co3O4@Ag-H not only provides plenty of Electromagnetic enhancement (EM) hotspots but also the trace detection capability for droplet rapid sensing within 2 s. Cu@Co3O4@Ag-H substrate is further developed as an effective SERS sensing platform for pesticide residues detection on the surfaces of fruits and vegetables with excellent LOD of 0.1 ppm, which is lower than the most similar reported works. This work offers new potential for bioassay, disease POCT diagnosis, national security, wearable flexible devices, energy storage and other related fields.


Fluids ◽  
2021 ◽  
Vol 6 (12) ◽  
pp. 463
Author(s):  
Abraham Medina ◽  
Abel López-Villa ◽  
Carlos A. Vargas

By using sandpaper of different grit, we have scratched up smooth sheets of acrylic to cover their surfaces with disordered but near parallel micro-grooves. This procedure allowed us to transform the acrylic surface into a functional surface; measuring the capillary rise of silicone oil up to an average height h¯, we found that h¯ evolves as a power law of the form h¯∼tn, where t is the elapsed time from the start of the flow and n takes the values 0.40 or 0.50, depending on the different inclinations of the sheets. Such behavior can be understood alluding to the theoretical predictions for the capillary rise in very tight, open capillary wedges. We also explore other functionalities of such surfaces, as the loss of mass of water sessile droplets on them and the generic role of worn surfaces, in the short survival time of SARS-CoV-2, the virus that causes COVID-19.


2021 ◽  
Vol 2131 (5) ◽  
pp. 052024
Author(s):  
E A Polsky ◽  
S V Sorokin ◽  
V M Shemenkov

Abstract The article deals with the problems of engineering support of the main indicators of reliability (durability) for the shape elements of molds. The influence of geometric, physico-mechanical, and physico-chemical parameters of surface quality on the formation of the required service characteristics of mating parts that ensure the established operating time of the product for failure is studied. The results of the influence of ion-plasma treatment on the structure and phase composition are presented: 1.2344 and 1.2379 tool steels (DIN). It is evaluated that the glow discharge treatment leads to the erosion of the fingerprints, appearing in the process of nitriding of this type of steel and it also causes thickening of defects in the matrix phase α-Fe together with fine grading CrN, as well as the dispersion of carbide inclusions and their uniform distribution in the surface layer to a depth of up to 80 microns, resulting in the increase of the microhardness of the surface by 15 - 18 %.


Author(s):  
Evgeny A. Pamfilov ◽  
◽  
Vladimir V. Kapustin ◽  
Galina A. Pilyushina ◽  
Elena V. Sheveleva ◽  
...  

Ensuring the competitiveness of enterprises of the forest complex is largely due to the level of reliable and high-performance equipment use, since this achieves a significant increase in the efficiency of timber harvesting and processing. At the same time, the required level of reliability of logging machines is largely determined by the performance of their functional units that carry out the basic technological operations. Accordingly, the development and implementation of ways and methods to improve the performance of functional units of machines is important when creating promising models of the specified equipment. This requires an analysis of the prospects and technical possibilities for improving the main mechanisms and units of logging machines and the factors limiting their performance. In order to improve the performance of machine functional units, it is essential to ensure the coordinated provision of favorable levels of a significant number of design and technological parameters. In particular, it is advisable to optimize the nature of the relative movement of the friction-contacting surfaces of the parts and reduce the loads acting on them. This is due to the fact that these factors determine the wear resistance and friction resistance, as well as the thermal mode of the machine operation, the stress state of the functional surface layers and the strength of the fixed joints. At the same time, the influence of operating conditions, the wear intensity and service life of the objects under study should be taken into account. This approach is due to the fact that tribotechnical units of logging machines perform their functions under the action of high shock, cyclic and vibration loads, in a wide range of harsh natural and climatic conditions characterized by low temperatures, high humidity, and the action of chemical and abrasive media. All this should be considered when justifying effective ways to improve the performance of functional units, including manipulators of logging machines, and achieved through regulated directional control of the properties of surface layers in the design and manufacture of friction-contacting parts. The paper substantiates the need to create scientific and engineering foundations for improving the performance of functional units and working bodies of machines, as well as achieving the required performance, durability and reliability. For this purpose, the tasks of further research aimed at obtaining information, the absence of which makes it impossible to create domestic import-substituting equipment, are clarified. For citation: Pamfilov E.A., Kapustin V.V., Pilyushina G.A., Sheveleva E.V. Improving the Performance of Working Bodies and Tribosystems of Harvester Technological Equipment. Lesnoy Zhurnal [Russian Forestry Journal], 2021, no. 6, pp. 135–149. DOI: 10.37482/0536-1036-2021-6-135-149


2021 ◽  
Vol 7 (2) ◽  
pp. 680-683
Author(s):  
Sabine Illner ◽  
Michelle Sühr ◽  
Nicklas Fiedler ◽  
Daniela Arbeiter ◽  
Andreas Götz ◽  
...  

Abstract Electrospinning (ES) is a suitable and cost effective method to mimic the chemical composition, morphology, and functional surface of natural tissues, for example of the nervous, dermal, vascular, and musculoskeletal systems. This technique is a versatile tool to obtain tailored fibrous scaffolds from various polymer materials. By varying the diameter, porosity, orientation, layering, surface structuring, mechanical properties and biodegradability of the fibers the properties can be adapted for specific applications ranging from implantable medical devices to wound repair and protective clothing. Especially the combination of different polymer types offers a high potential. In this study electrospun two-component nonwoven structures of thermoplastic copolyester elastomer (TPC-ET) and bioresorbable polylactide (PLLA) were fabricated, using different ES setups. A comparative evaluation in terms of porosity, thermal and mechanical properties as well as required fabrication effort, was performed. Nonwovens made from polymer blends and coaxial spun core-sheath fibers showed similar tensile strength, which was higher than dual electrospun fabrics. Porosity was found to be in the range of 80 - 90%. By modifying the polymer solution and process parameters multicomponent nonwoven structures with tailored properties and drug release profiles can be manufactured.


2021 ◽  
pp. 132749
Author(s):  
Ming Liu ◽  
Chenghao Li ◽  
Zhilong Peng ◽  
Yin Yao ◽  
Shaohua Chen

Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5937
Author(s):  
Muhammad Umar Aslam Khan ◽  
Iqra Iqbal ◽  
Mohamed Nainar Mohamed Ansari ◽  
Saiful Izwan Abd Razak ◽  
Mohsin Ali Raza ◽  
...  

The present research is based on the fabrication preparation of CS/PVA/GG blended hydrogel with nontoxic tetra orthosilicate (TEOS) for sustained paracetamol release. Different TEOS percentages were used because of their nontoxic behavior to study newly designed hydrogels’ crosslinking and physicochemical properties. These hydrogels were characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and wetting to determine the functional, surface morphology, hydrophilic, or hydrophobic properties. The swelling analysis in different media, degradation in PBS, and drug release kinetics were conducted to observe their response against corresponding media. The FTIR analysis confirmed the components added and crosslinking between them, and surface morphology confirmed different surface and wetting behavior due to different crosslinking. In various solvents, including water, buffer, and electrolyte solutions, the swelling behaviour of hydrogel was investigated and observed that TEOS amount caused less hydrogel swelling. In acidic pH, hydrogels swell the most, while they swell the least at pH 7 or higher. These hydrogels are pH-sensitive and appropriate for controlled drug release. These hydrogels demonstrated that, as the ionic concentration was increased, swelling decreased due to decreased osmotic pressure in various electrolyte solutions. The antimicrobial analysis revealed that these hydrogels are highly antibacterial against Gram-positive (Staphylococcus aureus and Bacillus cereus) and Gram negative (Pseudomonas aeruginosa and Escherichia coli) bacterial strains. The drug release mechanism was 98% in phosphate buffer saline (PBS) media at pH 7.4 in 140 min. To analyze drug release behaviour, the drug release kinetics was assessed against different mathematical models (such as zero and first order, Higuchi, Baker–Lonsdale, Hixson, and Peppas). It was found that hydrogel (CPG2) follows the Peppas model with the highest value of regression (R2 = 0.98509). Hence, from the results, these hydrogels could be a potential biomaterial for wound dressing in biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document